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Welcome!

Thank you for joining us! This book powers our popular Data Structures
and Algorithms online specialization on Coursera1 and online MicroMas-
ters program at edX2. We encourage you to sign up for a session and learn
this material while interacting with thousands of other talented students
from around the world. As you explore this book, you will find a number
of active learning components that help you study the material at your
own pace.

1. PROGRAMMING CHALLENGES ask you to implement the algo-
rithms that you will encounter in one of programming languages
that we support: C, C++, Java, JavaScript, Python, Scala, C#,
Haskell, Ruby, and Rust (the last four programming languages are
supported by Coursera only). These code challenges are embedded
in our Coursera and edX online courses.

2. ALGORITHMIC PUZZLES provide you with a fun way to “invent”
the key algorithmic ideas on your own! Even if you fail to solve some
puzzles, the time will not be lost as you will better appreciate the
beauty and power of algorithms. These puzzles are also embedded
in our Coursera and edX online courses.

3. EXERCISE BREAKS offer “just in time” assessments testing your
understanding of a topic before moving to the next one.

4. STOP and THINK questions invite you to slow down and contem-
plate the current material before continuing to the next topic.

1www.coursera.org/specializations/data-structures-algorithms
2www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures
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About This Book

I find that I don’t understand things unless I try to program them.
—Donald E. Knuth, The Art of Computer Programming, Volume 4

There are many excellent books on Algorithms — why in the world we
would write another one???

Because we feel that while these books excel in introducing algorith-
mic ideas, they have not yet succeeded in teaching you how to implement
algorithms, the crucial computer science skill.

Our goal is to develop an Intelligent Tutoring System for learning algo-
rithms through programming that can compete with the best professors in
a traditional classroom. This MOOC book is the first step towards this goal
written specifically for our Massive Open Online Courses (MOOCs) form-
ing a specialization “Algorithms and Data Structures” on Coursera plat-
form3 and a microMasters program on edX platform4. Since the launch
of our MOOCs in 2016, hundreds of thousand students enrolled in this
specialization and tried to solve more than hundred algorithmic program-
ming challenges to pass it. And some of them even got offers from small
companies like Google after completing our specialization!

In the last few years, some professors expressed concerns about the
pedagogical quality of MOOCs and even called them the “junk food of ed-
ucation.” In contrast, we are among the growing group of professors who
believe that traditional classes, that pack hundreds of students in a single
classroom, represent junk food of education. In a large classroom, once
a student takes a wrong turn, there are limited opportunities to ask a ques-
tion, resulting in a learning breakdown, or the inability to progress further
without individual guidance. Furthermore, the majority of time a student
invests in an Algorithms course is spent completing assignments outside
the classroom. That is why we stopped giving lectures in our offline classes
(and we haven’t got fired yet :-). Instead, we give flipped classes where stu-
dents watch our recorded lectures, solve algorithmic puzzles, complete
programming challenges using our automated homework checking sys-
tem before the class, and come to class prepared to discuss their learning

3www.coursera.org/specializations/data-structures-algorithms
4www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures
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x About This Book

breakdowns with us.
When a student suffers a learning breakdown, that student needs im-

mediate help in order to proceed. Traditional textbooks do not provide
such help, but our automated grading system described in this MOOC
book does! Algorithms is a unique discipline in that students’ ability to
program provides the opportunity to automatically check their knowl-
edge through coding challenges. These coding challenges are far superior
to traditional quizzes that barely check whether a student fell asleep. In-
deed, to implement a complex algorithm, the student must possess a deep
understanding of its underlying algorithmic ideas.

We believe that a large portion of grading in thousands of Algorithms
courses taught at various universities each year can be consolidated into
a single automated system available at all universities. It did not escape
our attention that many professors teaching algorithms have implemented
their own custom-made systems for grading student programs, an illus-
tration of academic inefficiency and lack of cooperation between various
instructors. Our goal is to build a repository of algorithmic programming
challenges, thus allowing professors to focus on teaching. We have already
invested thousands of hours into building such a system and thousands
students in our MOOCs tested it. Below we briefly describe how it works.

When you face a programming challenge, your goal is to implement
a fast and memory-efficient algorithm for its solution. Solving program-
ming challenges will help you better understand various algorithms and
may even land you a job since many high-tech companies ask applicants
to solve programming challenges during the interviews. Your implemen-
tation will be checked automatically against many carefully selected tests
to verify that it always produces a correct answer and fits into the time
and memory constrains. Our system will teach you to write programs that
work correctly on all of our test datasets rather than on some of them. This
is an important skill since failing to thoroughly test your programs leads
to undetected bugs that frustrate your boss, your colleagues, and, most
importantly, users of your programs.

You maybe wondering why it took thousands of hours to develop such
a system. First, we had to build a Compendium of Learning Breakdowns
for each programming challenge, 10–15 most frequent errors that stu-
dents make while solving it. Afterwards, we had to develop test cases
for each learning breakdown in each programming challenge, over 20 000
test cases for just 100 programming challenges in our specialization.
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We encourage you to sign up for our Algorithms and Data Structures
specialization on Coursera or MicroMasters program on edX and start in-
teracting with thousands of talented students from around the world who
are learning algorithms. Thank you for joining us!
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Programming Challenges and Algorithmic
Puzzles

This edition introduces basic algorithmic techniques using 29 program-
ming challenges represented as icons below:

Sum of Two Digits

2 + 3 = 5

Maximum
Pairwise Product

5 6 2 7 4
5 30 10 35 20
6 30 12 42 24
2 10 12 7 4
7 35 42 14 28
4 20 24 8 28

Fibonacci Number

1
1

2

3
5

Last Digit
of Fibonacci

Number

F170 =150804340016
807970735635
273952047185

Greatest
Common Divisor

10
2

6

Least Com-
mon Multiple

30 2

3

5

6

15

10

Fibonacci
Number Again

Fn mod 3

0

0

1
1

1 1

2
23

0

5
2

82

13
1

Sum of
Fibonacci Numbers

1 + 1 + 2 + 3 + 5 + 8 = 20

Partial Sum of
Fibonacci Numbers

2 + 3 + 5 + 8 + 13 = 31

Money Change

¢1 ¢5 ¢10

Maximum Value
of the Loot

Maximum
Advertisement

Revenue
clicks prices

30

20

10

5

3

2

Collecting
Signatures

Maximum
Number of Prizes

8

1 2 5

Maximum Salary

Resume

Binary Search

1 3 7 8 9 12 15

1 3 7 8 9 12 15

1 3 7 8 9 12 15

Majority Element Improving
QuickSort

Number of
Inversion

3 2 5 9 4

Organizing
a Lottery

1 0 2 1

Closest Points Money
Change Again

¢1

¢3

¢4

Primitive Calculator

1

+1

×2

×3

Edit Distance

short

hort

port

ports

Longest Common
Subsequence of
Two Sequences

7 2 9 3 1 5 9 4

2 8 1 3 9 7

Longest Common
Subsequence of

Three Sequences

8 3 2 1 7 3

8 2 1 3 8 10 7

6 8 3 1 4 7

Maximum
Amount of Gold

Partitioning
Souvenirs

3 6 4 1 9 6 9 1

Maximum Value
of an Arith-

metic Expression

((8− 5)× 3) = 9
(8− (5× 3)) = −7
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You are also welcome to solve the following algorithmic puzzles avail-
able at http://dm.compsciclub.ru/app/list:

7 9 4 5 3 1 6 2 8

Book Sorting. Rearrange books on the shelf (in the increasing
order of heights) using minimum number of swaps.

Map Coloring. Use minimum number of colors such that
neighboring countries are assigned different colors and each
country is assigned a single color.

Eight Queens. Place eight queens on the chessboard such that
no two queens attack each other (a queen can move horizon-
tally, vertically, or diagonally).

Clique Finding. Find the largest group of mutual friends
(each pair of friends is represented by an edge).

Hanoi Towers. Move all disks from one peg to another using
a minimum number of moves. In a single move, you can move
a top disk from one peg to any other peg provided that you
don’t place a larger disk on the top of a smaller disk.

Icosian Game. Find a cycle visiting each node exactly once.

Guarini Puzzle. Exchange the places of the white knights and
the black knights. Two knights are not allowed to occupy the
same cell of the chess board.

Room Assignment. Place each student in one of her/his
preferable rooms in a dormitory so that each room is occupied
by a single student (preferable rooms are shown by edges).

http://dm.compsciclub.ru/app/list
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Tree Construction. Remove the minimum number of edges
from the graph to make it acyclic.

1

1 2

0

?

?

?

?

?

?

?

?

?

?

?

?

Number of Paths. Find out how many paths are there to get
from the bottom left circle to any other circle and place this
number inside the corresponding circle.

Black and White Squares. Use the minimum number of
questions “What is the color of this square?” to find two
neighboring squares of different colors. The leftmost square
is white, the rightmost square is black, but the colors of all
other squares are unknown.

21
questions

Twenty One Questions Game. Find an unknown integer 1 ≤
x ≤N by asking the minimum number of questions “Is x = y?”
(for any 1 ≤ y ≤ N ). Your opponent will reply either “Yes”, or
“x < y”, or “x > y.”

1

+1

×2

×3

Antique Calculator. Find the minimum number of opera-
tions needed to get a positive integer n from the integer 1 us-
ing only three operations: add 1, multiply by 2, or multiply
by 3.

Subway Lines. You are planning a subway system where the
subway lines should not cross. Can you connect each pair of
the five stations except for a single pair?

Two Rocks Game. There are two piles of ten rocks. In each
turn, you and your opponent may either take one rock from
a single pile, or one rock from both piles. Your opponent
moves first and the player that takes the last rock wins the
game. Design a winning strategy.

Three Rocks Game. There are two piles of ten rocks. In each
turn, you and your opponent may take up to three rocks. Your
opponent moves first and the player that takes the last rock
wins the game. Design a winning strategy.
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What Lies Ahead

Watch for our future editions that will cover the following topics.

Data Structures

Arrays and Lists

Priority Queues

Disjoint Sets

Hash Tables

Binary Search Trees

Algorithms on Graphs

Graphs Decomposition

Shortest Paths in Graphs

Minimum Spanning Trees

Shortest Paths in Real Life

Algorithms on Strings

Pattern Matching

Suffix Trees

Suffix Arrays

Burrows–Wheeler Transform

Advanced Algorithms and Complexity

Flows in Networks

Linear Programmings

NP-complete Problems

Coping with NP-completeness

Streaming Algorithms
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Chapter 1: Algorithms and Complexity

This book presents programming challenges that will teach you how to
design and implement algorithms. Solving a programming challenge is
one of the best ways to understand an algorithm’s design as well as to
identify its potential weaknesses and fix them.

1.1 What Is an Algorithm?

Roughly speaking, an algorithm is a sequence of instructions that one
must perform in order to solve a well-formulated problem. We will spec-
ify problems in terms of their inputs and their outputs, and the algorithm
will be the method of translating the inputs into the outputs. A well-
formulated problem is unambiguous and precise, leaving no room for mis-
interpretation.

After you designed an algorithm, two important questions to ask are:
“Does it work correctly?” and “How much time will it take?” Certainly
you would not be satisfied with an algorithm that only returned correct
results half the time, or took 1000 years to arrive at an answer.

1.2 Pseudocode

To understand how an algorithm works, we need some way of listing the
steps that the algorithm takes, while being neither too vague nor too for-
mal. We will use pseudocode, a language computer scientists often use
to describe algorithms. Pseudocode ignores many of the details that are
required in a programming language, yet it is more precise and less am-
biguous than, say, a recipe in a cookbook.

1.3 Problem Versus Problem Instance

A problem describes a class of computational tasks. A problem instance is
one particular input from that class. To illustrate the difference between
a problem and an instance of a problem, consider the following example.
You find yourself in a bookstore buying a book for $4.23 which you pay

1



2 Chapter 1. Algorithms and Complexity

for with a $5 bill. You would be due 77 cents in change, and the cashier
now makes a decision as to exactly how you get it. You would be annoyed
at a fistful of 77 pennies or 15 nickels and 2 pennies, which raises the
question of how to make change in the least annoying way. Most cashiers
try to minimize the number of coins returned for a particular quantity of
change. The example of 77 cents represents an instance of the Change
Problem, which we describe below.

The example of 77 cents represents an instance of the Change Problem
that assumes that there are d denominations represented by an array
c = (c1, c2, . . . , cd). For simplicity, we assume that the denominations are
given in decreasing order of value. For example, c = (25,10,5,1) for
United States denominations.

Change Problem
Convert some amount of money into given denominations, using the smallest
possible number of coins.

Input: An integer money and an array of d denominations c =
(c1, c2, . . . , cd), in decreasing order of value (c1 > c2 > · · · > cd).
Output: A list of d integers i1, i2, . . . , id such that c1 · i1 + c2 · i2 +
· · ·+ cd · id = money, and i1 + i2 + · · ·+ id is as small as possible.

The algorithm that is used by cashiers all over the world to solve this
problem is simple:

Change(money, c, d):
while money > 0:
coin← coin with the largest denomination that does not exceed money
give coin with denomination coin to customer
money←money− coin

Here is a faster version of Change:

Change(money, c, d):
r←money
for k from 1 to d:

ik← b rck c
r← r − ck · ik

return (i1, i2, . . . , id)



1.4. Correct Versus Incorrect Algorithms 3

1.4 Correct Versus Incorrect Algorithms

We say that an algorithm is correct when it translates every input instance
into the correct output. An algorithm is incorrect when there is at least
one input instance for which the algorithm gives an incorrect output.

Change is an incorrect algorithm! Suppose you were changing 40 cents
into coins with denominations of c1 = 25, c2 = 20, c3 = 10, c4 = 5, and
c5 = 1. Change would incorrectly return 1 quarter, 1 dime, and 1 nickel,
instead of 2 twenty-cent pieces. As contrived as this may seem, in 1875
a twenty-cent coin existed in the United States. How sure can we be that
Change returns the minimal number of coins for the modern US denomi-
nations or for denominations in any other country?

To correct the Change algorithm, we could consider every possible
combination of coins with denominations c1, c2, . . . , cd that adds to money,
and return the combination with the fewest. We only need to con-
sider combinations with i1 ≤ money/c1 and i2 ≤ money/c2 (in general, ik
should not exceed money/ck), because we would otherwise be returning
an amount of money larger than money. The pseudocode below uses the
symbol

∑
that stands for summation:

∑m
i=1 ai = a1 +a2 + · · ·+am. The pseu-

docode also uses the notion of “infinity” (denoted as∞) as an initial value
for smallestNumberOfCoins; there are a number of ways to carry this out
in a real computer, but the details are not important here.

BruteForceChange(money, c, d):
smallestNumberOfCoins←∞
for each (i1, . . . , id) from (0, . . . ,0) to (money/c1, . . . ,money/cd)

valueOfCoins←
∑d

k=1 ik · ck
if valueOfCoins = M:

numberOfCoins =
∑d

k=1 ik
if numberOfCoins < smallestNumberOfCoins:

smallestNumberOfCoins← numberOfCoins
change← (i1, i2, . . . , id)

return change

The second line iterates over every feasible combination (i1, . . . , id) of
the d indices, and stops when it has reached (money/c1, . . . ,money/cd).

How do we know that BruteForceChange does not suffer from the
same problem as Change did, namely that it generates incorrect result



4 Chapter 1. Algorithms and Complexity

for some input instance?? Since BruteForceChange explores all feasible
combinations of denominations, it will eventually come across an optimal
solution and record it as such in the change array. Any combination of
coins that adds to M must have at least as many coins as the optimal com-
bination, so BruteForceChange will never overwrite change with a sub-
optimal solution.

So far we have answered only one of the two important algorithmic
questions (“Does it work?”, but not “How much time will it take?”).

Stop and Think. How fast is BruteForceChange?

1.5 Fast Versus Slow Algorithms

Real computers require a certain amount of time to perform an operation
such as addition, subtraction, or testing the conditions in a while loop.
A supercomputer might take 10−10 second to perform an addition, while
a calculator might take 10−5 second. Suppose that you had a computer
that took 10−10 second to perform an elementary operation such as ad-
dition, and that you knew how many operations a particular algorithm
would perform. You could estimate the running time of the algorithm
simply by taking the product of the number of operations and the time
per operation. However, computers are constantly improving, leading to
a decreasing time per operation, so your notion of the running time would
soon be outdated. Rather than computing an algorithm’s running time on
every computer, we rely on the total number of operations that the al-
gorithm performs to describe its running time, since this is an attribute
of the algorithm, and not an attribute of the computer you happen to be
using.

Unfortunately, determining how many operations an algorithm will
perform is not always easy. If we know how to compute the number of
basic operations that an algorithm performs, then we have a basis to com-
pare it against a different algorithm that solves the same problem. Rather
than tediously count every multiplication and addition, we can perform
this comparison by gaining a high-level understanding of the growth of
each algorithm’s operation count as the size of the input increases.

Suppose an algorithm A performs 11n3 operations on an input of
size n, and an algorithm B solves the same problem in 99n2 + 7 opera-
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tions. Which algorithm, A or B, is faster? Although A may be faster than B
for some small n (e.g., for n between 0 and 9), B will become faster for
large n (e.g., for all n > 10). Since n3 is, in some sense, a “faster-growing”
function than n2 with respect to n , the constants 11, 99, and 7 do not
affect the competition between the two algorithms for large n. We refer
to A as a cubic algorithm and to B as a quadratic algorithm, and say that
A is less efficient than B because it performs more operations to solve the
same problem when n is large. Thus, we will often be somewhat imprecise
when we count operations of an algorithm—the behavior of algorithms on
small inputs does not matter.

Let’s estimate the number of operations BruteForceChange will take
on an input instance of M cents, and denominations (c1, c2, . . . , cd). To cal-
culate the total number of operations in the for loop, we can take the ap-
proximate number of operations performed in each iteration and multiply
this by the total number of iterations. Since there are roughly

money
c1

× money
c2

× · · · × money
cd

iterations, the for loop performs on the order of d × moneyd

c1c2···cd operations,
which dwarfs the other operations of the algorithm.

This type of algorithm is often referred to as an exponential algorithm
in contrast to quadratic, cubic, or other polynomial algorithms. The expres-
sion for the running time of exponential algorithms includes a term like
nd , where n and d are parameters of the problem (i.e., n and d may delib-
erately be made arbitrarily large by changing the input to the algorithm),
while the running time of a polynomial algorithm is bounded by a term
like nk where k is a constant not related to the size of any parameters.

For example, an algorithm with running time n1 (linear), n2

(quadratic), n3 (cubic), or even n2018 is polynomial. Of course, an algo-
rithm with running time n2018 is not very practical, perhaps less so than
some exponential algorithms, and much effort in computer science goes
into designing faster and faster polynomial algorithms. Since d may be
large when the algorithm is called with a long list of denominations (e.g.,
c = (1,2,3,4,5, . . . ,100)), we see that BruteForceChange can take a very
long time to execute.
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1.6 Big-O Notation

Computer scientists use the Big-O notation to describe concisely the run-
ning time of an algorithm. If we say that the running time of an algorithm
is quadratic, or O(n2), it means that the running time of the algorithm on
an input of size n is limited by a quadratic function of n. That limit may
be 99.7n2 or 0.001n2 or 5n2 + 3.2n+ 99993; the main factor that describes
the growth rate of the running time is the term that grows the fastest with
respect to n, for example n2 when compared to terms like 3.2n , or 99993.
All functions with a leading term of n2 have more or less the same rate of
growth, so we lump them into one class which we call O(n2). The differ-
ence in behavior between two quadratic functions in that class, say 99.7n2

and 5n2 + 3.2n + 99993, is negligible when compared to the difference in
behavior between two functions in different classes, say 5n2 + 3.2n and
1.2n3. Of course, 99.7n2 and 5n2 are different functions and we would
prefer an algorithm that takes 5n2 operations to an algorithm that takes
99.7n2. However, computer scientists typically ignore the leading con-
stant and pay attention only to the fastest growing term.

When we write f (n) = O(n2), we mean that the function f (n) does not
grow faster than a function with a leading term of cn2, for a suitable choice
of the constant c. In keeping with the healthy dose of pessimism toward
an algorithm’s performance, we measure an algorithm’s efficiency as its
worst case efficiency, which is the largest amount of time an algorithm can
take given the worst possible input of a given size. The advantage to con-
sidering the worst case efficiency of an algorithm is that we are guaranteed
that our algorithm will never behave worse than our worst case estimate,
so we are never surprised or disappointed. Thus, when we derive a Big-O
bound, it is a bound on the worst case efficiency.



Chapter 2: Algorithm Design Techniques

Over the last half a century, computer scientists have discovered that many
algorithms share similar ideas, even though they solve very different prob-
lems. There appear to be relatively few basic techniques that can be ap-
plied when designing an algorithm, and we cover some of them later in
various programming challenges in this book. For now we will mention
the most common algorithm design techniques, so that future examples
can be categorized in terms of the algorithm’s design methodology.

To illustrate the design techniques, we will consider a very simple
problem that plagued nearly everyone before the era of mobile phones
when people used cordless phones. Suppose your cordless phone rings,
but you have misplaced the handset somewhere in your home. How do
you find it? To complicate matters, you have just walked into your home
with an armful of groceries, and it is dark out, so you cannot rely solely
on eyesight.

2.1 Exhaustive Search Algorithms

An exhaustive search, or brute force, algorithm examines every possible al-
ternative to find one particular solution. For example, if you used the
brute force algorithm to find the ringing telephone, you would ignore the
ringing of the phone, as if you could not hear it, and simply walk over ev-
ery square inch of your home checking to see if the phone was present. You
probably would not be able to answer the phone before it stopped ringing,
unless you were very lucky, but you would be guaranteed to eventually
find the phone no matter where it was.

BruteForceChange is a brute force algorithm, and our programming
challenges include some additional examples of such algorithms—these
are the easiest algorithms to design, and sometimes they work for certain
practical problems. In general, though, brute force algorithms are too slow
to be practical for anything but the smallest instances and you should al-
ways think how to avoid the brute force algorithms or how to finesse them
into faster versions.

7
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2.2 Branch-and-Bound Algorithms

In certain cases, as we explore the various alternatives in a brute force
algorithm, we discover that we can omit a large number of alternatives,
a technique that is often called branch-and-bound.

Suppose you were exhaustively searching the first floor and heard the
phone ringing above your head. You could immediately rule out the need
to search the basement or the first floor. What may have taken three hours
may now only take one, depending on the amount of space that you can
rule out.

2.3 Greedy Algorithms

Many algorithms are iterative procedures that choose among a number of
alternatives at each iteration. For example, a cashier can view the Change
Problem as a series of decisions he or she has to make: which coin (among
d denominations) to return first, which to return second, and so on. Some
of these alternatives may lead to correct solutions while others may not.

Greedy algorithms choose the “most attractive” alternative at each it-
eration, for example, the largest denomination possible. In the case of the
US denominations, Change used quarters, then dimes, then nickels, and
finally pennies (in that order) to make change. Of course, we showed that
this greedy strategy produced incorrect results when certain new denom-
inations were included.

In the telephone example, the corresponding greedy algorithm would
simply be to walk in the direction of the telephone’s ringing until you
found it. The problem here is that there may be a wall (or a fragile vase)
between you and the phone, preventing you from finding it. Unfortu-
nately, these sorts of difficulties frequently occur in most realistic prob-
lems. In many cases, a greedy approach will seem “obvious” and natural,
but will be subtly wrong.

2.4 Dynamic Programming Algorithms

Some algorithms break a problem into smaller subproblems and use the
solutions of the subproblems to construct the solution of the larger one.
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During this process, the number of subproblems may become very large,
and some algorithms solve the same subproblem repeatedly, needlessly
increasing the running time. Dynamic programming organizes computa-
tions to avoid recomputing values that you already know, which can often
save a great deal of time.

The Ringing Telephone Problem does not lend itself to a dynamic pro-
gramming solution, so we consider a different problem to illustrate the
technique. Suppose that instead of answering the phone you decide to
play the “Rocks” game with two piles of rocks, say ten in each. In each
turn, one player may take either one rock (from either pile) or two rocks
(one from each pile). Once the rocks are taken, they are removed from
play. The player that takes the last rock wins the game. You make the first
move. We encourage you to play this game using our interactive puzzle.

To find the winning strategy for the 10+10 game, we can construct a ta-
ble, which we can call R, shown in Figure 2.1. Instead of solving a problem
with 10 rocks in each pile, we will solve a more general problem with n
rocks in one pile and m rocks in the other pile (the n + m game) where
n and m are arbitrary non-negative integers.

If Player 1 can always win the n+m game, then we would say R(n,m) =
W , but if Player 1 has no winning strategy against a player that always
makes the right moves, we would write R(n,m) = L. Computing R(n,m)
for arbitrary n and m seems difficult, but we can build on smaller val-
ues. Some games, notably R(0,1), R(1,0), and R(1,1), are clearly winning
propositions for Player 1 since in the first move, Player 1 can win. Thus,
we fill in entries (1,1) , (0,1), and (1,0) as W . See Figure 2.1(a).

After the entries (0,1), (1,0), and (1,1) are filled, one can try to fill
other entries. For example, in the (2,0) case, the only move that Player 1
can make leads to the (1,0) case that, as we already know, is a winning
position for his opponent. A similar analysis applies to the (0,2) case,
leading to the table in Figure 2.1(b).

In the (2,1) case, Player 1 can make three different moves that lead
respectively to the games of (1,1), (2,0), or (1,0). One of these cases, (2,0),
leads to a losing position for his opponent and therefore (2,1) is a winning
position. The case (1,2) is symmetric to (2,1), so we have the table shown
at Figure 2.1(c).

Now we can fill in R(2,2). In the (2,2) case, Player 1 can make three
different moves that lead to entries (2,1), (1,2), and (1,1). All of these
entries are winning positions for his opponent and therefore R(2,2) = L,
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0 1 2 3 4 5 6 7 8 9 10
0 W
1 W W
2

3

4

5

6

7

8

9

10

(a)

0 1 2 3 4 5 6 7 8 9 10
0 W L
1 W W
2 L
3

4

5

6

7

8

9

10

(b)

0 1 2 3 4 5 6 7 8 9 10
0 W L
1 W W W
2 L W
3

4

5

6

7

8

9

10

(c)

0 1 2 3 4 5 6 7 8 9 10
0 W L
1 W W W
2 L W L
3

4

5

6

7

8

9

10

(d)

0 1 2 3 4 5 6 7 8 9 10
0 W L W L W L W L W L
1 W W W W W W W W W W W
2 L W L W L W L W L W L
3 W W W W W W W W W W W
4 L W L W L W L W L W L
5 W W W W W W W W W W W
6 L W L W L W L W L W L
7 W W W W W W W W W W W
8 L W L W L W L W L W L
9 W W W W W W W W W W W

10 L W L W L W L W L W L

(e)

Figure 2.1: Table R for the 10 + 10 Rocks game.
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see Figure 2.1(d).
We can proceed filling in R in this way by noticing that for the entry

(i, j) to be L, the entries above, diagonally to the left, and directly to the
left, must be W . These entries ((i−1, j), (i−1, j−1), and (i, j−1)) correspond
to the three possible moves that Player 1 can make. See Figure 2.1(e).

The Rocks algorithm determines if Player 1 wins or loses. If Player 1
wins in an n+m game, Rocks returns W . If Player 1 loses, Rocks returns L.
We introduced an artificial initial condition, R(0,0) = L to simplify the
pseudocode.

Rocks(n, m):
R(0,0)← L
for i from 1 to n:

if R(i − 1,0) = W :
R(i,0)← L

else:
R(i,0)←W

for j from 1 to m:
if R(0, j − 1) = W :

R(0, j)← L
else:

R(0, j)←W
for i from 1 to n:

for j from 1 to m:
if R(i − 1, j − 1) = W and R(i, j − 1) = W and R(i − 1, j) = W :
R(i, j)← L

else:
R(i, j)←W

return R(n,m)

A faster algorithm to solve the Rocks puzzle relies on the simple pat-
tern in R, and checks if n and m are both even, in which case the player
loses (see table above).

FastRocks(n, m):
if n and m are both even:

return L
else:

return W
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However, though FastRocks is more efficient than Rocks, it may be
difficult to modify it for similar games, for example, a game in which each
player can move up to three rocks at a time from the piles. This is one
example where the slower algorithm is more instructive than a faster one.

Exercise Break. Play the Three Rocks game using our interactive puzzle
and construct the dynamic programming table similar to the table above
for this game.

2.5 Recursive Algorithms

Recursion is one of the most ubiquitous algorithmic concepts. Simply, an
algorithm is recursive if it calls itself.

The Towers of Hanoi puzzle consists of three pegs, which we label from
left to right as 1, 2, and 3, and a number of disks of decreasing radius,
each with a hole in the center. The disks are initially stacked on the left
peg (peg 1) so that smaller disks are on top of larger ones. The game is
played by moving one disk at a time between pegs. You are only allowed
to place smaller disks on top of larger ones, and any disk may go onto an
empty peg. The puzzle is solved when all of the disks have been moved
from peg 1 to peg 3. Try our interactive puzzle Hanoi Towers to figure out
how to move all disks from one peg to another.

Towers of Hanoi Problem
Output a list of moves that solves the Towers of Hanoi.

Input: An integer n.
Output: A sequence of moves that solve the n-disk Towers of
Hanoi puzzle.

Solving the puzzle with one disk is easy: move the disk to the right
peg. The two-disk puzzle is not much harder: move the small disk to the
middle peg, then the large disk to the right peg, then the small disk to the
right peg to rest on top of the large disk.

The three-disk puzzle is somewhat harder, but the following sequence
of seven moves solves it:
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1. Move disk from peg 1 to peg 3

2. Move disk from peg 1 to peg 2

3. Move disk from peg 3 to peg 2

4. Move disk from peg 1 to peg 3

5. Move disk from peg 2 to peg 1
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6. Move disk from peg 2 to peg 3

7. Move disk from peg 1 to peg 3

Now we will figure out how many steps are required to solve a four-
disk puzzle. You cannot complete this game without moving the largest
disk. However, in order to move the largest disk, we first had to move all
the smaller disks to an empty peg. If we had four disks instead of three,
then we would first have to move the top three to an empty peg (7 moves),
then move the largest disk (1 move), then again move the three disks from
their temporary peg to rest on top of the largest disk (another 7 moves).
The whole procedure will take 7 + 1 + 7 = 15 moves.

More generally, to move a stack of size n from the left to the right peg,
you first need to move a stack of size n−1 from the left to the middle peg,
and then from the middle peg to the right peg once you have moved the
n-th disk to the right peg. To move a stack of size n − 1 from the middle
to the right, you first need to move a stack of size n−2 from the middle to
the left, then move the (n−1)-th disk to the right, and then move the stack
of size n− 2 from the left to the right peg, and so on.

At first glance, the Towers of Hanoi Problem looks difficult. However,
the following recursive algorithm solves the Towers of Hanoi Problem with
just 9 lines!
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HanoiTowers(n, fromPeg, toPeg)
if n = 1:

output “Move disk from peg fromPeg to peg toPeg”
return

unusedPeg← 6− fromPeg− toPeg
HanoiTowers(n− 1, fromPeg,unusedPeg)
output “Move disk from peg fromPeg to peg toPeg”
HanoiTowers(n− 1,unusedPeg, toPeg)
return

The variables fromPeg, toPeg, and unusedPeg refer to the three differ-
ent pegs so that HanoiTowers(n,1,3) moves n disks from the first peg to
the third peg. The variable unusedPeg represents which of the three pegs
can serve as a temporary destination for the first n − 1 disks. Note that
fromPeg+ toPeg+ unusedPeg is always equal to 1 + 2 + 3 = 6, so the value
of the variable unusedPeg can be computed as 6− fromPeg− toPeg. Table
below shows the result of 6 − fromPeg − toPeg for all possible values of
fromPeg and toPeg.

fromPeg toPeg unusedPeg

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

After computing unusedPeg as 6− fromPeg− toPeg, the statements

HanoiTowers(n− 1, fromPeg,unusedPeg)
output “Move disk from peg fromPeg to peg toPeg”
HanoiTowers(n− 1,unusedPeg, toPeg)
return

solve the smaller problem of moving the stack of size n − 1 first to the
temporary space, moving the largest disk, and then moving the n − 1 re-
maining disks to the final destination. Note that we do not have to specify
which disk the player should move from fromPeg to toPeg: it is always the
top disk currently residing on fromPeg that gets moved.
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Although the Hanoi Tower solution can be expressed in just 9 lines of
pseudocode, it requires a surprisingly long time to run. To solve a five-
disk tower requires 31 moves, but to solve a hundred-disk tower would
require more moves than there are atoms on Earth. The fast growth of
the number of moves that HanoiTowers requires is easy to see by noticing
that every time HanoiTowers(n,1,3) is called, it calls itself twice for n−1,
which in turn triggers four calls for n− 2, and so on.

We can illustrate this situation in a recursion tree, which is
shown in Figure 2.2. A call to HanoiTowers(4,1,3) results in
calls HanoiTowers(3,1,2) and HanoiTowers(3,2,3); each of these
results in calls to HanoiTowers(2,1,3), HanoiTowers(2,3,2) and
HanoiTowers(2,2,1), HanoiTowers(2,1,3), and so on. Each call to the
subroutine HanoiTowers requires some amount of time, so we would like
to know how much time the algorithm will take.

To calculate the running time of HanoiTowers of size n, we denote the
number of disk moves that HanoiTowers(n) performs as T (n) and notice
that the following equation holds:

T (n) = 2 · T (n− 1) + 1 .

Starting from T (1) = 1, this recurrence relation produces the sequence:

1,3,7,15,31,63,

and so on. We can compute T (n) by adding 1 to both sides and noticing

T (n) + 1 = 2 · T (n− 1) + 1 + 1 = 2 · (T (n− 1) + 1) .

If we introduce a new variable, U (n) = T (n) + 1, then U (n) = 2 ·U (n − 1).
Thus, we have changed the problem to the following recurrence relation.

U (n) = 2 ·U (n− 1) .

Starting from U (1) = 2, this gives rise to the sequence

2,4,8,16,32,64, . . .

implying that at U (n) = 2n and T (n) = U (n) − 1 = 2n − 1. Thus,
HanoiTowers(n) is an exponential algorithm.
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(4,1,3)

(3, 1, 2)

(2, 1, 3)

(1, 1, 2) (1, 2, 3)

(2, 3, 2)

(1, 3, 1) (1, 1, 2)

(3, 2, 3)

(2, 2, 1)

(1, 2, 3) (1, 3, 1)

(2, 1, 3)

(1, 1, 2) (1, 2, 3)

Figure 2.2: The recursion tree for a call to HanoiTowers(4,1,3), which
solves the Towers of Hanoi problem of size 4. At each point in the tree,
(i, j,k) stands for HanoiTowers(i, j,k).
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2.6 Divide-and-Conquer Algorithms

One big problem may be hard to solve, but two problems that are half
the size may be significantly easier. In these cases, divide-and-conquer al-
gorithms fare well by doing just that: splitting the problem into smaller
subproblems, solving the subproblems independently, and combining the
solutions of subproblems into a solution of the original problem. The
situation is usually more complicated than this and after splitting one
problem into subproblems, a divide-and-conquer algorithm usually splits
these subproblems into even smaller sub-subproblems, and so on, until
it reaches a point at which it no longer needs to recurse. A critical step
in many divide-and-conquer algorithms is the recombining of solutions to
subproblems into a solution for a larger problem.

To give an example of a divide-and conquer algorithm, we will
consider the sorting problem:

Sorting Problem
Sort a list of integers.

Input: A list of n distinct integers a = (a1, a2, . . . , an).
Output: Sorted list of integers, that is, a reordering b =
(b1,b2, . . . , bn) of integers from a such that b1 < b2 < · · · < bn.

SelectionSort is a simple iterative method to solve the Sorting Prob-
lem. It first finds the smallest element in a, and moves it to the first po-
sition by swapping it with whatever happens to be in the first position
(i.e., a1). Next, it finds the second smallest element in a, and moves it
to the second position, again by swapping with a2 . At the i-th iteration,
SelectionSort finds the i-th smallest element in a, and moves it to the
i-th position. This is an intuitive approach at sorting, but is not the fastest
one.

If a = (7,92,87,1,4,3,2,6), SelectionSort(a,8) takes the following
seven steps:

(7,92,87,1,4,3,2,6)
(1,92,87,7,4,3,2,6)
(1,2,87,7,4,3,92,6)
(1,2,3,7,4,87,92,6)
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(1,2,3,4,7,87,92,6)
(1,2,3,4,6,87,92,7)
(1,2,3,4,6,7,92,87)
(1,2,3,4,6,7,87,92)

MergeSort is a canonical example of divide-and-conquer sorting algo-
rithm that is much faster than SelectionSort. We begin from the problem
of merging, in which we want to combine two sorted lists List1 and List2
into a single sorted list.

List1 2 5 7 8 | 2 5 7 8 | 2 5 7 8 | 2 5 7 8 | 2 5 7 8 | 2 5 7 8
List2 3 4 6 | 3 4 6 | 3 4 6 | 3 4 6 | 3 4 6 | 3 4 6
sortedList 2 3 4 5 6 7 8

The Merge algorithm combines two sorted lists into a single sorted list
in O(|List1| + |List2|) time by iteratively choosing the smallest remaining
element in List1 and List2 and moving it to the growing sorted list.

Merge(List1,List2):
SortedList← empty list
while both List1 and List2 are non-empty:

if the smallest element in List1 is smaller than the smallest element in List2
move the smallest element from List1 to the end of SortedList

else:
move the smallest element from List2 to the end of SortedList

move any remaining elements from either List1 or List2 to the end of SortedList
return SortedList

Merge would be useful for sorting an arbitrary list if we knew how to
divide an arbitrary (unsorted) list into two already sorted half-sized lists.
However, it may seem that we are back to where we started, except now
we have to sort two smaller lists instead of one big one. Yet sorting two
smaller lists is a preferable algorithmic problem. To see why, let’s con-
sider the MergeSort algorithm, which divides an unsorted list into two
parts and then recursively conquers each smaller sorting problem before
merging the sorted lists.
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MergeSort(List):
if List consists of a single element:

return List
FirstHalf← first half of List
SecondHalf← second half of List
SortedFirstHalf←MergeSort(FirstHalf)
SortedSecondHalf←MergeSort(SecondHalf)
SortedList←Merge(SortedFirstHalf,SortedSecondHalf)
return SortedList

Stop and Think. What is the runtime of MergeSort?

Figure 2.3 shows the recursion tree of MergeSort, consisting of log2n
levels, where n is the size of the original unsorted list. At the bottom level,
we must merge two sorted lists of approximately n/2 elements each, re-
quiring O(n/2+n/2) = O(n) time. At the next highest level, we must merge
four lists of n/4 elements, requiring O(n/4 + n/4 + n/4 + n/4) = O(n) time.
This pattern can be generalized: the i-th level contains 2i lists, each hav-
ing approximately n/2i elements, and requires O(n) time to merge. Since
there are log2n levels in the recursion tree, MergeSort requires O(n log2n)
runtime overall, which offers a speedup over a naive O(n2) sorting algo-
rithm.

2.7 Randomized Algorithms

If you happen to have a coin, then before even starting to search for the
phone, you could toss it to decide whether you want to start your search on
the first floor if the coin comes up heads, or on the second floor if the coin
comes up tails. If you also happen to have a die, then after deciding on the
second floor of your mansion, you could roll it to decide in which of the
six rooms on the second floor to start your search. Although tossing coins
and rolling dice may be a fun way to search for the phone, it is certainly
not the intuitive thing to do, nor is it at all clear whether it gives you any
algorithmic advantage over a deterministic algorithm. Our programming
challenges will help you to learn why randomized algorithms are useful
and why some of them have a competitive advantage over deterministic
algorithms.
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7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

Figure 2.3: The recursion tree for sorting an 8-element array with
MergeSort. The divide (upper) steps consist of log2 8 = 3 levels, where
the input array is split into smaller and smaller subarrays. The conquer
(lower) steps consist of the same number of levels, as the sorted subarrays
are merged back together.
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To give an example of a randomized algorithm, we will first discuss
a fast sorting technique called QuickSort. It selects an element m (typ-
ically, the first) from an array c and simply partitions the array into two
subarrays: csmall, containing all elements from c that are smaller than m;
and clarge containing all elements larger than m.

This partitioning can be done in linear time, and by following a divide-
and-conquer strategy, QuickSort recursively sorts each subarray in the
same way. The sorted list is easily created by simply concatenating the
sorted csmall, element m, and the sorted clarge.

QuickSort(c):
if c consists of a single element:

return c
m← c[1]
determine the set of elements csmall smaller than m
determine the set of elements clarge larger than m
QuickSort(csmall)
QuickSort(clarge)
combine csmall, m, and clarge into a single sorted array csorted
return csorted

It turns out that the running time of QuickSort depends on how lucky
we are with our selection of the element m. If we happen to choose m in
such a way that the array c is split into even halves (i.e., |csmall| = |clarge|),
then

T (n) = 2T
(n

2

)
+ a ·n,

where T (n) represents the time taken by QuickSort to sort an array of
n numbers, and a ·n represents the time required to split the array of size n
into two parts; a is a positive constant. This is exactly the same recurrence
as in MergeSort that leads to O(n logn) running time.

However, if we choose m in such a way that it splits c unevenly (e.g.,
an extreme case occurs when csmall is empty and clarge has n−1 elements),
then the recurrence looks like

T (n) = T (n− 1) + a ·n.

This is the recurrence that leads to O(n2) running time, something we
want to avoid. Indeed, QuickSort takes quadratic time to sort the array
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(n,n − 1, . . . ,2,1). Worse yet, it requires O(n2) time to process (1,2, . . . ,n −
1,n), which seems unnecessary since the array is already sorted.

The QuickSort algorithm so far seems like a bad imitation of
MergeSort. However, if we can choose a good “splitter” m that breaks
an array into two equal parts, we might improve the running time. To
achieve O(n logn) running time, it is not actually necessary to find a per-
fectly equal (50/50) split. For example, a split into approximately equal
parts of size, say, 51/49 will also work. In fact, one can prove that the al-
gorithm will achieve O(n logn) running time as long as the sets csmall and
clarge are both larger in size than n/4.

It implies that, of n possible choices for m as elements of the array c,
at least 3n

4 −
n
4 = n

2 of them make good splitters! In other words, if we ran-
domly choose m (i.e., every element of the array c has the same probability
to be chosen), there is at least a 50% chance that it will be a good splitter.
This observation motivates the following randomized algorithm:

RandomizedQuickSort(c):
if c consists of a single element:

return c
randomly select an element m from c
determine the set of elements csmall smaller than m
determine the set of elements clarge larger than m
RandomizedQuickSort(csmall)
RandomizedQuickSort(clarge)
combine csmall, m, and clarge into a single sorted array csorted
return csorted

RandomizedQuickSort is a fast algorithm in practice, but its worst
case running time remains O(n2) since there is still a possibility that it
selects bad splitters. Although the behavior of a randomized algorithm
varies on the same input from one execution to the next, one can prove
that its expected running time is O(n logn). The running time of a ran-
domized algorithm is a random variable, and computer scientists are often
interested in the mean value of this random variable which is referred to
as the expected running time.

The key advantage of randomized algorithms is performance: for
many practical problems randomized algorithms are faster (in the sense
of expected running time) than the best known deterministic algorithms.
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Another attractive feature of randomized algorithms, as illustrated by
RandomizedQuickSort, is their simplicity.

We emphasize that RandomizedQuickSort, despite making random
decisions, always returns the correct solution of the sorting problem. The
only variable from one run to another is its running time, not the result. In
contrast, other randomized algorithms usually produce incorrect (or, more
gently, approximate) solutions. Randomized algorithms that always return
correct answers are called Las Vegas algorithms, while algorithms that do
not are called Monte Carlo algorithms. Of course, computer scientists pre-
fer Las Vegas algorithms to Monte Carlo algorithms, but the former are
often difficult to come by.
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To introduce you to our automated grading system, we will discuss two
simple programming challenges and walk you through a step-by-step pro-
cess of solving them. We will encounter several common pitfalls and will
show you how to fix them.

Below is a brief overview of what it takes to solve a programming chal-
lenge in five steps:

Reading problem statement. Problem statement specifies the input-
output format, the constraints for the input data as well as time and
memory limits. Your goal is to implement a fast program that solves
the problem and works within the time and memory limits.

Designing an algorithm. When the problem statement is clear, start de-
signing an algorithm and don’t forget to prove that it works correctly.

Implementing an algorithm. After you developed an algorithm, start
implementing it in a programming language of your choice.

Testing and debugging your program. Testing is the art of revealing
bugs. Debugging is the art of exterminating the bugs. When your
program is ready, start testing it! If a bug is found, fix it and test
again.

Submitting your program to the grading system. After testing and de-
bugging your program, submit it to the grading system and wait for
the message “Good job!”. In the case you see a different message,
return back to the previous stage.

25
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3.1 Sum of Two Digits

Sum of Two Digits Problem
Compute the sum of two single digit numbers.

Input: Two single digit numbers.
Output: The sum of these num-
bers.

2 + 3 = 5

We start from this ridiculously simple problem to show you the
pipeline of reading the problem statement, designing an algorithm, im-
plementing it, testing and debugging your program, and submitting it to
the grading system.

Input format. Integers a and b on the same line (separated by a space).

Output format. The sum of a and b.

Constraints. 0 ≤ a,b ≤ 9.

Sample.
Input:
9 7

Output:
16

Time limits (sec.):

C C++ Java Python C# Haskell JavaScript Ruby Rust Scala

1 1 1.5 5 1.5 2 5 5 1 3

Memory limit. 512 Mb.
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For this trivial problem, we will skip “Designing an algorithm” step
and will move right to the pseudocode.

SumOfTwoDigits(a, b):
return a+ b

Since the pseudocode does not specify how we input a and b, below we
provide solutions in C++, Java, and Python3 programming languages as
well as recommendations on compiling and running them. You can copy-
and-paste the code to a file, compile/run it, test it on a few datasets, and
then submit (the source file, not the compiled executable) to the grading
system. Needless to say, we assume that you know the basics of one of
programming languages that we use in our grading system.

C++
#include <iostream>

int main() {
int a = 0;
int b = 0;
std::cin >> a;
std::cin >> b;
std::cout << a + b;
return 0;
}

Save this to a file (say, aplusb.cpp), compile it, run the resulting
executable, and enter two numbers (on the same line).

Java
import java.util.Scanner;

class APlusB {
public static void main(String[] args) {

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
System.out.println(a + b);
}
}
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Save this to a file APlusB.java, compile it, run the resulting exe-
cutable, and enter two numbers (on the same line).

Python3

# Uses python3
import sys

input = sys.stdin.read()
tokens = input.split()
a = int(tokens[0])
b = int(tokens[1])
print(a + b)

Save this to a file (say, aplusb.py), run it, and enter two numbers
on the same line. To indicate the end of input, press ctrl-d/ctrl-
z. (The first line in the code above tells the grading system to use
Python3 rather Python2.)

Your goal is to implement an algorithm that produces a correct result
under the given time and memory limits for any input satisfying the given
constraints. You do not need to check that the input data satisfies the
constraints, e.g., for the Sum of Two Digits Problem you do not need to
check that the given integers a and b are indeed single digit integers (this
is guaranteed).
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3.2 Maximum Pairwise Product

Maximum Pairwise Product Problem
Find the maximum product of two distinct num-
bers in a sequence of non-negative integers.

Input: A sequence of non-negative
integers.
Output: The maximum value that
can be obtained by multiplying
two different elements from the se-
quence.

5 6 2 7 4
5 30 10 35 20
6 30 12 42 24
2 10 12 7 4
7 35 42 14 28
4 20 24 8 28

Given a sequence of non-negative integers a1, . . . , an, compute

max
1≤i,j≤n

ai · aj .

Note that i and j should be different, though it may be the case that ai = aj .

Input format. The first line contains an integer n. The next line contains
n non-negative integers a1, . . . , an (separated by spaces).

Output format. The maximum pairwise product.

Constraints. 2 ≤ n ≤ 2 · 105; 0 ≤ a1, . . . , an ≤ 2 · 105.

Sample 1.
Input:
3

1 2 3

Output:
6
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Sample 2.
Input:
10

7 5 14 2 8 8 10 1 2 3

Output:
140

Time and memory limits. The same as for the previous problem.

3.2.1 Naive Algorithm

A naive way to solve the Maximum Pairwise Product Problem is to go
through all possible pairs of the input elements A[1 . . .n] = [a1, . . . , an] and
to find a pair of distinct elements with the largest product:

MaxPairwiseProductNaive(A[1 . . .n]):
product← 0
for i from 1 to n:

for j from 1 to n:
if i , j:

if product < A[i] ·A[j]:
product← A[i] ·A[j]

return product

This code can be optimized and made more compact as follows.

MaxPairwiseProductNaive(A[1 . . .n]):
product← 0
for i from 1 to n:

for j from i + 1 to n:
product←max(product,A[i] ·A[j])

return product

Implement this algorithm in your favorite programming language. If
you are using C++, Java, or Python3, you may want to download the starter
files (we provide starter solutions in these three languages for all the prob-
lems in the book). For other languages, you need to implement your solu-
tion from scratch.
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Starter solutions for C++, Java, and Python3 are shown below.
C++

#include <iostream>

#include <vector>

using std::vector;

using std::cin;

using std::cout;

using std::max;

int MaxPairwiseProduct(const vector<int>& numbers) {

int product = 0;

int n = numbers.size();

for (int i = 0; i < n; ++i) {

for (int j = i + 1; j < n; ++j) {

product = max(product, numbers[i] * numbers[j]);

}

}

return product;

}

int main() {

int n;

cin >> n;

vector<int> numbers(n);

for (int i = 0; i < n; ++i) {

cin >> numbers[i];

}

int product = MaxPairwiseProduct(numbers);

cout << product << "\n";

return 0;

}

Java

import java.util.*;

import java.io.*;
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public class MaxPairwiseProduct {

static int getMaxPairwiseProduct(int[] numbers) {

int product = 0;

int n = numbers.length;

for (int i = 0; i < n; ++i) {

for (int j = i + 1; j < n; ++j) {

product = Math.max(product,

numbers[i] * numbers[j]);

}

}

return product;

}

public static void main(String[] args) {

FastScanner scanner = new FastScanner(System.in);

int n = scanner.nextInt();

int[] numbers = new int[n];

for (int i = 0; i < n; i++) {

numbers[i] = scanner.nextInt();

}

System.out.println(getMaxPairwiseProduct(numbers));

}

static class FastScanner {

BufferedReader br;

StringTokenizer st;

FastScanner(InputStream stream) {

try {

br = new BufferedReader(new

InputStreamReader(stream));

} catch (Exception e) {

e.printStackTrace();

}

}

String next() {

while (st == null || !st.hasMoreTokens()) {

try {
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st = new StringTokenizer(br.readLine());

} catch (IOException e) {

e.printStackTrace();

}

}

return st.nextToken();

}

int nextInt() {

return Integer.parseInt(next());

}

}

}

Python

# Uses python3

n = int(input())

a = [int(x) for x in input().split()]

product = 0

for i in range(n):

for j in range(i + 1, n):

product = max(product, a[i] * a[j])

print(product)

After submitting this solution to the grading system, many students
are surprised when they see the following message:

Failed case #4/17: time limit exceeded

After you submit your program, we test it on dozens of carefully de-
signed test cases to make sure the program is fast and error proof. As the
result, we usually know what kind of errors you made. The message above
tells that the submitted program exceeds the time limit on the 4th out of
17 test cases.

Stop and Think. Why the solution does not fit into the time limit?
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MaxPairwiseProductNaive performs of the order of n2 steps on a se-
quence of length n. For the maximal possible value n = 2 · 105, the
number of steps is of the order 4 · 1010. Since many modern com-
puters perform roughly 108–109 basic operations per second (this de-
pends on a machine, of course), it may take tens of seconds to execute
MaxPairwiseProductNaive, exceeding the time limit for the Maximum
Pairwise Product Problem.

We need a faster algorithm!

3.2.2 Fast Algorithm

In search of a faster algorithm, you play with small examples like
[5,6,2,7,4]. Eureka—it suffices to multiply the two largest elements of
the array—7 and 6!

Since we need to find the largest and the second largest elements, we
need only two scans of the sequence. During the first scan, we find the
largest element. During the second scan, we find the largest element
among the remaining ones by skipping the element found at the previ-
ous scan.

MaxPairwiseProductFast(A[1 . . .n]):
index1← 1
for i from 2 to n:

if A[i] > A[index1]:
index1← i

index2← 1
for i from 2 to n:

if A[i] , A[index1] and A[i] > A[index2]:
index2← i

return A[index1] ·A[index2]

3.2.3 Testing and Debugging

Implement this algorithm and test it using an input A = [1,2]. It will
output 2, as expected. Then, check the input A = [2,1]. Surprisingly, it
outputs 4. By inspecting the code, you find out that after the first loop,
index1 = 1. The algorithm then initializes index2 to 1 and index2 is never
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updated by the second for loop. As a result, index1 = index2 before the
return statement. To ensure that this does not happen, you modify the
pseudocode as follows:

MaxPairwiseProductFast(A[1 . . .n]):
index1← 1
for i from 2 to n:

if A[i] > A[index1]:
index1← i

if index1 = 1:
index2← 2

else:
index2← 1

for i from 1 to n:
if A[i] , A[index1] and A[i] > A[index2]:

index2← i

return A[index1] ·A[index2]

Check this code on a small datasets [7,4,5,6] to ensure that it produces
correct results. Then try an input

2

100000 90000

You may find out that the program outputs something like 410065408 or
even a negative number instead of the correct result 9000000000. If it
does, this is most probably caused by an integer overflow. For example, in
C++ programming language a large number like 9000000000 does not fit
into the standard int type that on most modern machines occupies 4 bytes
and ranges from −231 to 231 − 1, where

231 = 2147483648 .

Hence, instead of using the C++ int type you need to use the int64 t type
when computing the product and storing the result. This will prevent
integer overflow as the int64 t type occupies 8 bytes and ranges from
−263 to 263 − 1, where

263 = 9223372036854775808 .
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You then proceed to testing your program on large data sets, e.g., an
array A[1 . . .2 ·105], where A[i] = i for all 1 ≤ i ≤ 2 ·105. There are two ways
of doing this.

1. Create this array in your program and pass it to
MaxPairwiseProductFast (instead of reading it from the stan-
dard input).

2. Create a separate program, that writes such an array to a file
dataset.txt. Then pass this dataset to your program from console
as follows:

yourprogram < dataset.txt

Check that your program processes this dataset within time limit and re-
turns the correct result: 39999800000. You are now confident that the
program finally works!

However, after submitting it to the testing system, it fails again...

Failed case #5/17: wrong answer

But how would you generate a test case that make your program fail and
help you to figure out what went wrong?

3.2.4 Can You Tell Me What Error Have I Made?

You are probably wondering why we did not provide you with the 5th out
of 17 test datasets that brought down your program. The reason is that
nobody will provide you with the test cases in real life!

Since even experienced programmers often make subtle mistakes solv-
ing algorithmic problems, it is important to learn how to catch bugs as
early as possible. When the authors of this book started to program, they
naively thought that nearly all their programs are correct. By now, we
know that our programs are almost never correct when we first run them.

When you are confident that your program works, you often test it on
just a few test cases, and if the answers look reasonable, you consider your
work done. However, this is a recipe for a disaster. To make your program
always work, you should test it on a set of carefully designed test cases.
Learning how to implement algorithms as well as test and debug your
programs will be invaluable in your future work as a programmer.
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3.2.5 Stress Testing

We will now introduce stress testing—a technique for generating thou-
sands of tests with the goal of finding a test case for which your solution
fails.

A stress test consists of four parts:

1. Your implementation of an algorithm.

2. An alternative, trivial and slow, but correct implementation of an
algorithm for the same problem.

3. A random test generator.

4. An infinite loop in which a new test is generated and fed into both
implementations to compare the results. If their results differ, the
test and both answers are output, and the program stops, otherwise
the loop repeats.

The idea behind stress testing is that two correct implementations
should give the same answer for each test (provided the answer to the
problem is unique). If, however, one of the implementations is incorrect,
then there exists a test on which their answers differ. The only case when
it is not so is when there is the same mistake in both implementations,
but that is unlikely (unless the mistake is somewhere in the input/output
routines which are common to both solutions). Indeed, if one solution is
correct and the other is wrong, then there exists a test case on which they
differ. If both are wrong, but the bugs are different, then most likely there
exists a test on which two solutions give different results.

Here is the the stress test for MaxPairwiseProductFast using
MaxPairwiseProductNaive as a trivial implementation:
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StressTest(N,M):
while true:

n← random integer between 2 and N
allocate array A[1 . . .n]
for i from 1 to n:
A[i]← random integer between 0 and M

print(A[1 . . .n])
result1←MaxPairwiseProductNaive(A)
result2←MaxPairwiseProductFast(A)
if result1 = result2:

print(“OK”)
else:

print(“Wrong answer: ”, result1, result2)
return

The while loop above starts with generating the length of the input
sequence n, a random number between 2 and N . It is at least 2, because
the problem statement specifies that n ≥ 2. The parameter N should be
small enough to allow us to explore many tests despite the fact that one of
our solutions is slow.

After generating n, we generate an array A with n random numbers
from 0 to M and output it so that in the process of the infinite loop we
always know what is the current test; this will make it easier to catch an
error in the test generation code. We then call two algorithms on A and
compare the results. If the results are different, we print them and halt.
Otherwise, we continue the while loop.

Let’s run StressTest(10,100000) and keep our fingers crossed in
a hope that it outputs “Wrong answer.” We see something like this (the
result can be different on your computer because of a different random
number generator).

...
OK
67232 68874 69499
OK
6132 56210 45236 95361 68380 16906 80495 95298
OK
62180 1856 89047 14251 8362 34171 93584 87362 83341 8784
OK
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21468 16859 82178 70496 82939 44491
OK
68165 87637 74297 2904 32873 86010 87637 66131 82858 82935
Wrong answer: 7680243769 7537658370

Hurrah! We’ve found a test case where MaxPairwiseProductNaive

and MaxPairwiseProductFast produce different results, so now we can
check what went wrong. Then we can debug this solution on this test
case, find a bug, fix it, and repeat the stress test again.

Stop and Think. Do you see anything suspicious in the found dataset?

Note that generating tests automatically and running stress test is easy,
but debugging is hard. Before diving into debugging, let’s try to generate
a smaller test case to simplify it. To do that, we change N from 10 to 5
and M from 100000 to 9.

Stop and Think. Why did we first run StressTest with large parame-
ters N and M and now intend to run it with small N and M?

We then run the stress test again and it produces the following.

...
7 3 6
OK
2 9 3 1 9
Wrong answer: 81 27

The slow MaxPairwiseProductNaive gives the correct answer 81 (9 · 9 =
81), but the fast MaxPairwiseProductFast gives an incorrect answer 27.

Stop and Think. How MaxPairwiseProductFast can possibly return 27?

To debug our fast solution, let’s check which two numbers it identifies
as two largest ones. For this, we add the following line before the return

statement of the MaxPairwiseProductFast function:

print(index1, index2)

After running the stress test again, we see the following.

...
7 3 6
1 3
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OK
5
2 9 3 1 9
2 3
Wrong answer: 81 27

Note that our solutions worked and then failed on exactly the same
test cases as on the previous run of the stress test, because we didn’t
change anything in the test generator. The numbers it uses to generate
tests are pseudorandom rather than random—it means that the sequence
looks random, but it is the same each time we run this program. It is
a convenient and important property, and you should try to have your
programs exhibit such behavior, because deterministic programs (that al-
ways give the same result for the same input) are easier to debug than
non-deterministic ones.

Now let’s examine index1 = 2 and index2 = 3. If we look at the code for
determining the second maximum, we will notice a subtle bug. When we
implemented a condition on i (such that it is not the same as the previ-
ous maximum) instead of comparing i and index1, we compared A[i] with
A[index1]. This ensures that the second maximum differs from the first
maximum by the value rather than by the index of the element that we
select for solving the Maximum Pairwise Product Problem. So, our solu-
tion fails on any test case where the largest number is equal to the second
largest number. We now change the condition from

A[i] , A[index1]

to

i , index1

After running the stress test again, we see a barrage of “OK” messages
on the screen. We wait for a minute until we get bored and then decide
that MaxPairwiseProductFast is finally correct!

However, you shouldn’t stop here, since you have only generated very
small tests with N = 5 and M = 10. We should check whether our pro-
gram works for larger n and larger elements of the array. So, we change
N to 1000 (for larger N , the naive solution will be pretty slow, because
its running time is quadratic). We also change M to 200000 and run. We
again see the screen filling with words “OK”, wait for a minute, and then
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decide that (finally!) MaxPairwiseProductFast is correct. Afterwards, we
submit the resulting solution to the grading system and pass the Maxi-
mum Pairwise Product Problem test!

As you see, even for such a simple problems like Maximum Pairwise
Product, it is easy to make subtle mistakes when designing and imple-
menting an algorithm. The pseudocode below presents a more “reliable”
way of implementing the algorithm.

MaxPairwiseProductFast(A[1 . . .n]):
index← 1
for i from 2 to n:

if A[i] > A[index]:
index← i

swap A[index] and A[n]
index← 1
for i from 2 to n− 1:

if A[i] > A[index]:
index← i

swap A[index] and A[n− 1]
return A[n− 1] ·A[n]

In this book, besides learning how to design and analyze algorithms,
you will learn how to implement algorithms in a way that minimizes the
chances of making a mistake, and how to test your implementations.

3.2.6 Even Faster Algorithm

The MaxPairwiseProductFast algorithm finds the largest and the second
largest elements in about 2n comparisons.

Exercise Break. Find two largest elements in an array in 1.5n compar-
isons.

After solving this problem, try the next, even more challenging Exer-
cise Break.

Exercise Break. Find two largest elements in an array in n + dlog2ne − 2
comparisons.
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And if you feel that the previous Exercise Break was easy, here are the
next two challenges that you may face at your next interview!

Exercise Break. Prove that no algorithm for finding two largest elements
in an array can do this in less than n+ dlog2ne − 2 comparisons.

Exercise Break. What is the fastest algorithm for finding three largest
elements?

3.2.7 A More Compact Algorithm

The Maximum Pairwise Product Problem can be solved by the following
compact algorithm that uses sorting (in non-decreasing order).

MaxPairwiseProductBySorting(A[1 . . .n]):
Sort(A)
return A[n− 1] ·A[n]

This algorithm does more than we actually need: instead of finding two
largest elements, it sorts the entire array. For this reason, its running time
is O(n logn), but not O(n). Still, for the given constraints (2 ≤ n ≤ 2 · 105)
this is usually sufficiently fast to fit into a second and pass our grader.

3.3 Solving a Programming Challenge in Five
Easy Steps

Below we summarize what we’ve learned in this chapter.

3.3.1 Reading Problem Statement

Start by reading the problem statement that contains the description of
a computational task, time and memory limits, and a few sample tests.
Make sure you understand how an output matches an input in each sam-
ple case.

If time and memory limits are not specified explicitly in the problem
statement, the following default values are used.
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Time limits (sec.):

C C++ Java Python C# Haskell JavaScript Ruby Rust Scala

1 1 1.5 5 1.5 2 5 5 1 3

Memory limit: 512 Mb.

3.3.2 Designing an Algorithm

After designing an algorithm, prove that it is correct and try to estimate
its expected running time on the most complex inputs specified in the
constraints section. If you laptop performs roughly 108–109 operations
per second, and the maximum size of a dataset in the problem description
is n = 105, then an algorithm with quadratic running time is unlikely to
fit into the time limit (since n2 = 1010), while a solution with running time
O(n logn) will. However, an O(n2) solution will fit if n = 1000, and if
n = 100, even an O(n3) solutions will fit. Although polynomial algorithms
remain unknown for some hard problems in this book, a solution with
O(2nn2) running time will probably fit into the time limit as long as n is
smaller than 20.

3.3.3 Implementing an Algorithm

Start implementing your algorithm in one of the following program-
ming languages supported by our automated grading system: C, C++, C#,
Haskell, Java, JavaScript, Python2, Python3, Ruby, or Scala. For all
problems, we provide starter solutions for C++, Java, and Python3. For
other programming languages, you need to implement a solution from
scratch. The grading system detects the programming language of your
submission automatically, based on the extension of the submission file.

We have reference solutions in C++, Java, and Python3 (that we don’t
share with you) which solve the problem correctly under the given con-
straints, and spend at most 1/3 of the time limit and at most 1/2 of the
memory limit. You can also use other languages, and we’ve estimated the
time limit multipliers for them. However, we have no guarantee that a cor-
rect solution for a particular problem running under the given time and
memory constraints exists in any of those other languages.
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In the Appendix, we list compiler versions and flags used by the grad-
ing system. We recommend using the same compiler flags when you test
your solution locally. This will increase the chances that your program be-
haves in the same way on your machine and on the testing machine (note
that a buggy program may behave differently when compiled by different
compilers, or even by the same compiler with different flags).

3.3.4 Testing and Debugging

Submitting your implementation to the grading system without testing
it first is a bad idea! Start with small datasets and make sure that your
program produces correct results on all sample datasets. Then proceed
to checking how long it takes to process a large dataset. To estimate the
running time, it makes sense to implement your algorithm as a function
like solve(dataset) and then implement an additional procedure gener-
ate() that produces a large dataset. For example, if an input to a problem
is a sequence of integers of length 1 ≤ n ≤ 105, then generate a sequence of
length 105, pass it to your solve() function, and ensure that the program
outputs the result quickly.

Check the boundary values to ensure that your program processes cor-
rectly both short sequences (e.g., with 2 elements) and long sequences
(e.g., with 105 elements). If a sequence of integers from 0 to, let’s say, 106

is given as an input, check how your program behaves when it is given
a sequence 0,0, . . . ,0 or a sequence 106,106, . . . ,106. Afterwards, check it
also on randomly generated data. Check degenerate cases like an empty
set, three points on a single line, a tree which consists of a single path of
nodes, etc.

After it appears that your program works on all these tests, proceed
to stress testing. Implement a slow, but simple and correct algorithm and
check that two programs produce the same result (note however that this
is not applicable to problems where the output is not unique). Generate
random test cases as well as biased tests cases such as those with only
small numbers or a small range of large numbers, strings containing a sin-
gle letter “a” or only two different letters (as opposed to strings composed
of all possible Latin letters), and so on. Think about other possible tests
which could be peculiar in some sense. For example, if you are generating
graphs, try generating trees, disconnected graphs, complete graphs, bipar-
tite graphs, etc. If you generate trees, try generating paths, binary trees,
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stars, etc. If you are generating integers, try generating both prime and
composite numbers.

3.3.5 Submitting to the Grading System

When you are done with testing, submit your program to the grading sys-
tem! Go to the submission page, create a new submission, and upload a file
with your program (make sure to upload a source file rather than an exe-
cutable). The grading system then compiles your program and runs it on
a set of carefully constructed tests to check that it outputs a correct result
for all tests and that it fits into the time and memory limits. The grading
usually takes less than a minute, but in rare cases, when the servers are
overloaded, it might take longer. Please be patient. You can safely leave
the page when your solution is uploaded.

As a result, you get a feedback message from the grading system. You
want to see the “Good job!” message indicating that your program passed
all the tests. The messages “Wrong answer”, “Time limit exceeded”,
“Memory limit exceeded” notify you that your program failed due to one
of these reasons. If you program fails on one of the first two test cases, the
grader will report this to you and will show you the test case and the out-
put of your program. This is done to help you to get the input/output
format right. In all other cases, the grader will not show you the test case
where your program fails.

3.4 Good Programming Practices

Programming is an art of not making off-by-one errors. In this section,
we will describe some good practices for software implementation that
will help you to avoid off-by-one bugs (OBOBs) and many other common
programming pitfalls. Sticking to these good practices will help you to
write a reliable, compact, readable, and debuggable code.

Stick to a specific code style.
Mixing various code styles in your programs make them less read-
able. See https://en.wikipedia.org/wiki/Programming_style to
select your favorite code style.

https://en.wikipedia.org/wiki/Programming_style
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Use meaningful names for variables.
Using a name like speed instead of s will help your team members
to read your program and will help you to debug it.

Turn on all compiler/interpreter warnings.
Although inexperienced programmers sometimes view warnings as
a nuisance, they help you to catch some bugs at the early stages of
your software implementations.

Structure your code.
Structured programming paradigm is aimed at improving the clarity
and reducing the development time of your programs by making ex-
tensive use of subroutines. Break your code into many subroutines
such that each subroutine is responsible for a single logical opera-
tion.

Make your code compact if it does not reduce its readability.
For example, if condition is a Boolean variable then use the latter of
the following two programs that achieve the same goal:

if condition:
return true

else:
return false

return condition

When computing the minimum number in an array, instead of

if current <minimum:
minimum← current

use

minimum←min(minimum,current)



3.4. Good Programming Practices 47

Use assert statements.
Each time, there is a condition that must be true at a certain point of
your program, add a line

assert(condition)

A postcondition (precondition) is a statement that has to be true before
(or after) the call to the function. It makes sense to state precondi-
tions and postconditions for every function in your program. For
example, it would save you time if you added a line

assert(index1 , index2)

when implementing an algorithm for the Maximum Pairwise Prod-
uct Problem in Section 3.2.2.

The assert statements can also be used to ensure that a certain point
in your program is never reached. See the following Python code for
computing the greatest common divisor of two positive integers.

def gcd(a, b):

assert a >= 1 and b >= 1

for d in range(min(a, b), 0, -1):

if a % d == 0 and b % d == 0:

return d

assert False

Avoid integer overflow.
Check the bounds on the input values, estimate the maximum value
for the intermediate results and pick a sufficiently large numeric
type.

For C++ in particular, it makes sense to use explicitly sized types like
int64 t instead of long, because types like int, long or long long

may have different sizes depending on the computing platform.
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When computing modulo m, take every intermediate result mod-
ulo m. Say, you need to compute the remainder of the product of all
elements of an array A[0..n − 1] modulo 17. The naive way of doing
this is the following.

result← 1
for i from 0 to n− 1:
result← result ·A[i]

return result mod 17

In languages with integer overflow (like C++ and Java) this will give
a wrong result in many cases: even if n = 100 and A[i] = 2 for all i,
the product of A[i]’s does not fit into 64 bits. In languages with out-
of-the-box long arithmetic, this code will be slower than needed (as
the result is getting larger at every iteration). The right way of solv-
ing this task is the following.

result← 1
for i from 0 to n− 1:
result← (result ·A[i]) mod 17

return result mod 17

Avoid floating point numbers whenever possible.
In the Maximum Value of the Loot Problem (Section 5.2) you need
to compare

pi
wi

and
pj
wj

,

where pi and pj (wi and wj) are prices (weights) of two compounds.
Instead of comparing these rational numbers, compare integers pi ·wj
and pj ·wi , since integers are faster to compute and precise. However,
remember about integer overflow when compute products of large
numbers!

In the Closest Points Problem (Section 6.6) you need to compare
distances between a pair of points (x1, y1) and (x2, y2) and a pair of
points (x3, y3) and (x4, y4):√

(x1 − x2)2 + (y1 − y2)2 and
√

(x3 − x4)2 + (y3 − y4)2 .
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Again, instead of comparing these values, compare the values of
their squares:

(x1 − x2)2 + (y1 − y2)2 and (x3 − x4)2 + (y3 − y4)2 .

In fact, in this problem you need to deal with non-integers numbers
just once: when outputting the result.

Use 0-based arrays.
Even if the problem statement specifies a 1-based sequence like
a1, . . . , an, store it in a 0-based array A[0..n− 1] (such that A[i] = ai−1)
instead of a 1-based array A[0..n] (such that A[i] = ai). In most pro-
gramming languages arrays are 0-based. A 0-based array contains
only the input data, while an array A[0..n] contains a dummy ele-
ment A[0] that you may accidentally use in your program. For this
reason, the size of a 0-based array is equal to the number of input
elements making it easier to iterate through it.

To illustrate this point, compare the following two Python imple-
mentations of a function that reads an integer n followed by reading
integers a1, a2, . . . , an.

The first implementation uses a 1-based array A.

n = int(stdin.readline())

A = [None] * (n + 1)

for i in range(1, n + 1):

A[i] = int(stdin.readline())

The second one uses a 0-based array A.

n = int(stdin.readline())

A = [None] * n

for i in range(len(A)):

A[i] = int(stdin.readline())

Use semiopen intervals.
Recall that the MergeSort algorithm first sorts the left half of the
given array, then sorts the second half, and finally merges the re-
sults. The recursive implementation of this algorithm, given below,



50 Chapter 3. Programming Challenges

takes an array A as well as two indices l and r and sorts the subarray
A[l..r]. That is, it sorts the closed interval [l, r] = {l, l+1, . . . , r} of A that
includes both boundaries l and r.

MergeSort(A,l, r):
if l − r + 1 ≤ 1:

return
m← b l+r2 c
MergeSort(A,l,m)
MergeSort(A,m+ 1, r)
Merge(A,l,m,r)

A semiopen interval includes the left boundary and excludes the right
boundary: [l, r) = {l, l + 1, . . . , r − 1}. Using semiopen instead of closed
intervals reduces the chances of making an off-by-one error, because:

1. The number of elements in a semiopen interval [l, r) is r − l (for
a closed interval [l, r], it is r − l + 1).

2. It is easy to split a semiopen interval into two semiopen in-
tervals: [l, r) = [l,m) ∪ [m,r) (for a closed interval [l, r], [l, r] =
[l,m]∪ [m+ 1, r]).

Compare the previous implementation with the following one.

MergeSort(A,l, r):
if l − r ≤ 1:

return
m← b l+r2 c
MergeSort(A,l,m)
MergeSort(A,m,r)
Merge(A,l,m,r)

For an array A[0..n − 1], the outer call for the first implemen-
tation is MergeSort(A,0,n − 1), while for the second one it is
MergeSort(A,0,n).

Note also that for languages with integer overflow, the line
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m← b l+r2 c

may produce an incorrect result. A safer way of computing the value
of m is

m← l + b r−l2 c
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Chapter 4: Algorithmic Warm Up

In this chapter, you will learn that programs based on efficient algorithms
can be a billion time faster than programs based on naive algorithms.
You will learn how to estimate the running time and memory of an al-
gorithm without ever implementing it. Armed with this knowledge, you
will be able to compare various algorithms, select the most efficient ones,
and finally implement them to solve various programming challenges!
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4.1 Fibonacci Number

Fibonacci Number Problem
Compute the n-th Fibonacci number.

Input: An integer n.
Output: n-th Fibonacci number.

1
1

2

3
5

Fibonacci numbers are defined recursively:

Fn =

n if n is 0 or 1
Fn−1 +Fn−2 if n ≥ 2

resulting in the following recursive algorithm:

Fibonacci(n):
if n ≤ 1:

return n
return Fibonacci(n− 1) +Fibonacci(n− 2)

Implement this algorithm and try to compute F40. You will see that it
already takes significant time. And the Sun may die before your computer
returns F150 since modern computers need billions of years to compute
this number...

To understand why this algorithm is so slow, try computing F20 at
http://www.cs.usfca.edu/˜galles/visualization/DPFib.html.

Enter “20” and press the “Fibonacci Recursive” button. You will see
a seemingly endless series of recursive calls. Now, press “Skip Forward”
to stop the recursive algorithm and call the iterative algorithm by pressing
“Fibonacci Table”. This will instantly compute F20. (Note that the visu-
alization uses a slightly different definition of Fibonacci numbers: F0 = 1
instead of F0 = 0.)

http://www.cs.usfca.edu/~galles/visualization/DPFib.html
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Input format. An integer n.

Output format. Fn.

Constraints. 0 ≤ n ≤ 45.

Sample 1.
Input:
3

Output:
2

Sample 2.
Input:
10

Output:
55

Time and memory limits. When time/memory limits are not specified,
we use the default values specified in Section 3.3.1.
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4.2 Last Digit of Fibonacci Number

Last Digit of Fibonacci Number Problem
Compute the last digit of the n-th Fibonacci num-
ber.

Input: An integer 0 ≤ n ≤ 105.
Output: The last digit of the n-th
Fibonacci number.

F170 =150804340016
807970735635
273952047185

To solve this problem, let’s compute Fn and simply output its last digit:

FibonacciLastDigit(n):
F[0]← 0
F[1]← 1
for i from 2 to n:

F[i]← F[i − 1] +F[i − 2]
return F[n] mod 10

Note that Fibonacci numbers grow fast. For example,

F100 = 354224848179261915075.

Therefore, if you use C++ int32 t or int64 t types for storing F, you will
quickly hit an integer overflow. If you reach out for arbitrary precision
numbers, like Java’s BigInteger, or Pythons built-in integers, you’ll notice
that the loop runs much slower when the iteration number increases.

To get around this issue, instead of storing the i-th Fibonacci number
in F[i] we will store just the last digit of Fi , i.e., we replace the body of the
for loop with the following:

F[i]← (F[i − 1] +F[i − 2]) mod 10

Afterwards, computing the sum of single digit numbers F[i−1] and F[i−2]
will be fast.

Input format. An integer n.
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Output format. The last digit of Fn.

Constraints. 0 ≤ n ≤ 106.

Sample 1.
Input:
3

Output:
2

F3 = 2.

Sample 2.
Input:
139

Output:
1

F139 = 50095301248058391139327916261.

Sample 3.
Input:
91239

Output:
6

F91239 will take more than ten pages to represent, but its last digit
is equal to 6.
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4.3 Greatest Common Divisor

Greatest Common Divisor Problem
Compute the greatest common divisor of two pos-
itive integers.

Input: Two positive integers.
Output: Their greatest common
divisor.

10
2

6

The greatest common divisor GCD(a,b) of two positive integers a and b
is the largest integer d that divides both a and b. The solution of the Great-
est Common Divisor Problem was first described (but not discovered!) by
the Greek mathematician Euclid twenty three centuries ago. But the name
of a mathematician who discovered this algorithm, a century before Euclid
described it, remains unknown. Centuries later, Euclid’s algorithm was re-
discovered by Indian and Chinese astronomers. Now, efficient algorithm
for computing the greatest common divisor is an important ingredient of
modern cryptographic algorithms.

Your goal is to implement Euclid’s algorithm for computing GCD.

Input format. Integers a and b (separated by a space).

Output format. GCD(a,b).

Constraints. 1 ≤ a,b ≤ 2 · 109.

Sample.
Input:
28851538 1183019

Output:
17657

28851538 = 17657 · 1634, 1183019 = 17657 · 67.
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4.4 Least Common Multiple

Least Common Multiple Problem
Compute the least common multiple of two posi-
tive integers.

Input: Two positive integers.
Output: Their least common mul-
tiple.

30 2

3

5

6

15

10

The least common multiple LCM(a,b) of two positive integers a and b
is the smallest integer m that is divisible by both a and b.

Stop and Think. How LCM(a,b) is related to GCD(a,b)?

Input format. Integers a and b (separated by a space).

Output format. LCM(a,b).

Constraints. 1 ≤ a,b ≤ 2 · 109.

Sample 1.
Input:
6 8

Output:
24

Among all positive integers that are divisible by both 6 and 8 (e.g.,
48, 480, 24), 24 is the smallest one.

Sample 2.
Input:
28851538 1183019

Output:
1933053046

1 933 053 046 is the smallest positive integer divisible by both
28 851 538 and 1 183 019.
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4.5 Fibonacci Number Again

Fibonacci Number Again Problem
Compute the n-th Fibonacci number modulo m.

Input: Integers 0 ≤ n ≤ 1018 and
2 ≤m ≤ 105.
Output: n-th Fibonacci modulo m.

Fn mod 3

0

0

1
1

1 1

2
23

0

5
2

82

13
1

In this problem, n may be so huge that an algorithm looping for
n iterations will be too slow. Therefore we need to avoid such a loop. To
get an idea how to solve this problem without going through all Fibonacci
numbers Fi for i from 0 to n, take a look at the table below:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Fi mod 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
Fi mod 3 0 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1

Stop and Think. Do you see any interesting properties of the last two
rows in the table above?

Both these sequences are periodic! For m = 2, the period is 011 and has
length 3, while for m = 3 the period is 01120221 and has length 8.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Fi mod 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
Fi mod 3 0 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1

Therefore, to compute, say, F2015 mod 3 we just need to find the re-
mainder of 2015 when divided by 8. Since 2015 = 251 · 8 + 7, we conclude
that F2015 mod 3 = F7 mod 3 = 1.
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It turns out that for any integer m ≥ 2, the sequence Fn mod m is pe-
riodic. The period always starts with 01 and is known as Pisano period
(Pisano is another name of Fibonacci).

Exercise Break. What is the period of Fi mod 5?

Exercise Break. Prove that Fi mod m is periodic for every m.

Exercise Break. Prove that the period of Fi mod m does not exceed m2.

Input format. Integers n and m.

Output format. Fn mod m.

Constraints. 1 ≤ n ≤ 1018, 2 ≤m ≤ 105.

Sample 1.
Input:
1 239

Output:
1

F1 mod 239 = 1 mod 239 = 1.

Sample 2.
Input:
115 1000

Output:
885

F115 mod 1000 = 483162952612010163284885 mod 1000 = 885.

Sample 3.
Input:
2816213588 30524

Output:
10249

F2816213588 would require hundreds pages to write it down, but
F2816213588 mod 30524 = 10249.
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4.6 Last Digit of the Sum of Fibonacci Numbers

Last Digit of the Sum of Fibonacci Numbers
Problem
Compute the last digit of F0 +F1 + · · ·+Fn.

Input: Integer 0 ≤ n ≤ 1018.
Output: The last digit of F0 + F1 +
· · ·+Fn.

1 + 1 + 2 + 3 + 5 + 8 = 20

Hint. Since the brute force approach for this problem is too slow, try to
come up with a formula for F0+F1+F2+· · ·+Fn. Play with small values of n
to get an insight and use a solution for the previous problem afterwards.

Input format. Integer n.

Output format. (F0 +F1 + · · ·+Fn) mod 10.

Constraints. 0 ≤ n ≤ 1018.

Sample 1.
Input:
3

Output:
4

F0 +F1 +F2 +F3 = 0 + 1 + 1 + 2 = 4.

Sample 2.
Input:
100

Output:
5

F0 + · · ·+F100 = 927372692193078999175.
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4.7 Last Digit of the Sum of Fibonacci Numbers
Again

Last Digit of the Partial Sum of Fibonacci
Numbers Problem
Compute the last digit of Fm +Fm+1 + · · ·+Fn.

Input: Integers m and n.
Output: The last digit of Fm +
Fm+1 + · · ·+Fn.

2 + 3 + 5 + 8 + 13 = 31

Input format. Integers m and n.

Output format. (Fm +Fm+1 + · · ·+Fn) mod 10.

Constraints. 0 ≤m ≤ n ≤ 1018.

Sample 1.
Input:
3 7

Output:
1

F3 +F4 +F5 +F6 +F7 = 2 + 3 + 5 + 8 + 13 = 31.

Sample 2.
Input:
10 10

Output:
55

F10 = 55.
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Chapter 5: Greedy Algorithms

In this chapter, you will learn about seemingly naive yet powerful greedy
algorithms. After learning the key idea behind the greedy algorithms,
some of our students feel that they represent the algorithmic Swiss army
knife that can be applied to solve nearly all programming challenges in
this book. Be warned: since this intuitive idea rarely works in practice, you
have to prove that your greedy algorithm produces an optimal solution!

¢1 ¢5 ¢10

Money Change Maximum Value
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30

20
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1 2 5
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Maximum Salary

65
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5.1 Money Change

Money Change Problem
Compute the minimum number of coins needed
to change the given value into coins with denom-
inations 1, 5, and 10.

Input: Integer money.
Output: The minimum number
of coins with denominations 1, 5,
and 10 that changes money.

¢1 ¢5 ¢10

In this problem, you will implement a simple greedy algorithm used
by cashiers all over the world. We assume that a cashier has unlimited
number of coins of each denomination.

Input format. Integer money.

Output format. The minimum number of coins with denominations 1, 5,
10 that changes money.

Constraints. 1 ≤money ≤ 103.

Sample 1.
Input:
2

Output:
2

2 = 1 + 1.

Sample 2.
Input:
28

Output:
6

28 = 10 + 10 + 5 + 1 + 1 + 1.
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Solution

Here is the idea: while money > 0, keep taking a coin with the largest de-
nomination that does not exceed money, subtracting its value from money,
and adding 1 to the count of the number of coins:

ChangeMoney(money):
numCoins← 0
while money > 0:

if money ≥ 10:
money←money− 10

else if money ≥ 5:
money←money− 5

else:
money←money− 1

numCoins← numCoins+ 1
return numCoins

There is also a one-liner for solving this problem:

return bmoney/10c+ b(money mod 10)/5c+ (money mod 5)

Designing greedy algorithms is easy, but proving that they work is of-
ten non-trivial! You are probably wondering why we should waste time
proving the correctness of the obvious ChangeMoney algorithm. Just wait
until we setup an algorithmic trap to convince you that the proof below
is not a waste of time!

To prove that this greedy algorithms is correct, we show that taking
a coin with the largest denomination is consistent with some optimal so-
lution. I.e., we need to prove that for any positive integer money there
exists an optimal way of changing money that uses at least one coin with
denomination D, where D is the largest number among 1,5,10 that does
not exceed money. We prove this by considering a few cases. In each of
the cases we take some solution (i.e., a particular change for money) and
transform it so that the number of coins does not increase and it contains
at least one coin with denomination D. In particular, if we start from an
optimal way to change money what we get is also an optimal way of chang-
ing money that contains a coin D.

1. 1 ≤money < 5. In this case D = 1 and the only way to change money
is to use money coins of denomination 1.
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2. 5 ≤ money < 10. In this case D = 5. Clearly, any change of money
uses only coins with denominations 1 and 5. If it does not use a
coin with denomination 5, then it uses at least five coins of denom-
ination 1 (since money ≥ 5). By replacing them with one coin of
denomination 5 we improve this solution.

3. 10 ≤money. In this case D = 10. Consider a way of changing money
and assume that it does not use a coin 10. A simple, but crucial
observation is that some subset of the used coins sums up to 10. This
can be shown by considering the number of coins of denomination 5
in this solution: if there are no 5’s, then there are at least ten 1’s and
we replace them with a single 10; if there is exactly one 5, then there
are at least five 1’s and we replace them with a single 10 again; if
there are at least two 5’s, they can be again replaced.

Although this proof is long and rather boring, you need a proofseach
time you come up with a greedy algorithm! The next Exercise Break hints
a more compact way of proving the correctness of the algorithm above.

Exercise Break. Show that money mod 5 coins of denomination 1 are
needed in any solution and that the rest should be changed with coins of
denomination 10 and at most one coin of denomination 5.

Running time. The running time of the first algorithm (with the while
loop) is O(m) only, while the second algorithm requires only a few arith-
metic operations.

Stop and Think. Does this greedy algorithm work for denominations 1,
4, and 6?
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5.2 Maximum Value of the Loot

Maximizing the Value of the Loot Problem
Find the maximal value of items that fit into the
backpack.

Input: The capacity of a back-
pack W as well as the weights
(w1, . . . ,wn) and per pound prices
(p1, . . . ,pn) of n different com-
pounds.
Output: The maximum total price
of items that fit into the backpack
of the given capacity: i.e., the max-
imum value of p1 · u1 + · · · + pn · un
such that u1 + · · ·+ un ≤W and 0 ≤
ui ≤ wi for all i.

A thief breaks into a spice shop and finds four pounds of saffron, three
pounds of vanilla, and five pounds of cinnamon. His backpack fits at
most nine pounds, therefore he cannot take everything. Assuming that
the prices of saffron, vanilla, and cinnamon are $5 000, $200, and $10 per
pound respectively, what is the most valuable loot in this case? If the thief
takes u1 pounds of saffron, u2 pounds of vanilla, and u3 pounds of cinna-
mon, the total price of the loot is 5000 · u1 + 200 · u2 + 10 · u3. The thief
would like to maximize the value of this expression subject to the follow-
ing constraints: u1 ≤ 4, u2 ≤ 3, u3 ≤ 5, u1 +u2 +u3 ≤ 9.

Input format. The first line of the input contains the number n of com-
pounds and the capacity W of a backpack. The next n lines define
the prices and weights of the compounds. The i-th line contains the
price per pound pi and the weight wi of the i-th compound.

Output format. Output the maximum price of compounds that fit into
the backpack.

Constraints. 1 ≤ n ≤ 103, 0 ≤W ≤ 2 · 106; 0 ≤ pi ≤ 2 · 106, 0 < wi ≤ 2 · 106

for all 1 ≤ i ≤ n. All the numbers are integers.
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Bells and whistles. Although the Input to this problem consists of inte-
gers, the Output may be non-integer. Therefore, the absolute value
of the difference between the answer of your program and the opti-
mal value should be at most 10−3. To ensure this, output your an-
swer with at least four digits after the decimal point (otherwise your
answer, while being computed correctly, can turn out to be wrong
because of rounding issues).

Sample 1.
Input:
3 50

60 20

100 50

120 30

Output:
180.0000

To achieve the value 180, the thief takes the whole first compound
and the whole third compound.

Sample 2.
Input:
1 10

500 30

Output:
166.6667

The thief should take ten pounds of the only available compound.
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5.3 Maximum Advertisement Revenue

Maximum Product of Two Sequences Prob-
lem
Find the maximum dot product of two sequences
of numbers.

Input: Two sequences of n posi-
tive integers: price1, . . . ,pricen and
clicks1, . . . ,clicksn.
Output: The maximum value
of price1 · c1 + · · · + pricen · cn,
where c1, . . . , cn is a permutation of
clicks1, . . . ,clicksn.

clicks prices

30

20

10

5

3

2

You have n = 3 advertisement slots on your popular Internet page
and you want to sell them to advertisers. They expect, respectively,
clicks1 = 10, clicks2 = 20, and clicks3 = 30 clicks per day. You found three
advertisers willing to pay price1 = $2, price2 = $3, and price3 = $5 per
click. How would you pair the slots and advertisers? For example, the
blue pairing gives a revenue of 10 ·5+20 ·2+30 ·3 = 180 dollars, while the
black one results in revenue of 10 · 3 + 20 · 5 + 30 · 2 = 190 dollars.

Input format. The first line contains an integer n, the second one con-
tains a sequence of integers price1, . . . ,pricen, the third one contains
a sequence of integers clicks1, . . . ,clicksn.

Output format. Output the maximum value of (price1 ·c1+· · ·+pricen ·cn),
where c1, . . . , cn is a permutation of clicks1, . . . ,clicksn.

Constraints. 1 ≤ n ≤ 103; 0 ≤ pricei ,clicksi ≤ 105 for all 1 ≤ i ≤ n.
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Sample 1.
Input:
1

23

39

Output:
897

897 = 23 · 39.

Sample 2.
Input:
3

2 3 9

7 4 2

Output:
79

79 = 7 · 9 + 2 · 2 + 3 · 4.
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5.4 Collecting Signatures

Covering Segments by Points Problem
Find the minimum number of points needed to
cover all given segments on a line.

Input: A sequence of n segments
[a1,b1], . . . , [an,bn] on a line.
Output: A set of points of mini-
mum size such that each segment
[ai ,bi] contains a point, i.e., there
exists a point x such that ai ≤ x ≤
bi .

You are responsible for collecting signatures from all tenants in
a building. For each tenant, you know a period of time when he or she
is at home. You would like to collect all signatures by visiting the building
as few times as possible. For simplicity, we assume that when you enter
the building, you instantly collect the signatures of all tenants that are in
the building at that time.

Input format. The first line of the input contains the number n of seg-
ments. Each of the following n lines contains two integers ai and bi
(separated by a space) defining the coordinates of endpoints of the
i-th segment.

Output format. The minimum number m of points on the first line and
the integer coordinates of m points (separated by spaces) on the sec-
ond line. You can output the points in any order. If there are many
such sets of points, you can output any set.

Constraints. 1 ≤ n ≤ 100; 0 ≤ ai ≤ bi ≤ 109 for all i.
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Sample 1.
Input:
3

1 3

2 5

3 6

Output:
1

3

All three segments [1,3], [2,5], [3,6] contain the point with
coordinate 3.

Sample 2.
Input:
4

4 7

1 3

2 5

5 6

Output:
2

3 6

The second and the third segments contain the point with coordi-
nate 3 while the first and the fourth segments contain the point
with coordinate 6. All segments cannot be covered by a single point,
since the segments [1,3] and [5,6] do not overlap. Another valid
solution in this case is the set of points 2 and 5.
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5.5 Maximum Number of Prizes

Distinct Summands Problem
Represent a positive integer as the sum of the
maximum number of pairwise distinct positive
integers.

Input: Positive integer n.
Output: The maximum k such
that n can be represented as the
sum a1 + · · · + ak of k distinct inte-
gers.

8

1 2 5

You are organizing a competition for children and have n candies to
give as prizes. You would like to use these candies for top k places in
a competition with a restriction that a higher place gets a larger number
of candies. To make as many children happy as possible, you need to find
the largest value of k for which it is possible.

Input format. Integer n.

Output format. In the first line, output the maximum number k such that
n can be represented as the sum of k pairwise distinct positive inte-
gers. In the second line, output k pairwise distinct positive integers
that sum up to n (if there are many such representations, output any
of them).

Constraints. 1 ≤ n ≤ 109.

Sample 1.
Input:
6

Output:
3

1 2 3
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Sample 2.
Input:
8

Output:
3

1 2 5

Sample 3.
Input:
2

Output:
1

2



5.6. Maximum Salary 77

5.6 Maximum Salary

Largest Concatenate Problem
Compile the largest number by concatenating the
given numbers.

Input: A sequence of positive inte-
gers.
Output: The largest number that
can be obtained by concatenating
the given integers in some order.

Resume

This is probably the most important problem in this book :). As the last
question of an interview, your future boss gives you a few pieces of paper
with a single number written on each of them and asks you to compose
a largest number from these numbers. The resulting number is going to
be your salary, so you are very motivated to solve this problem!

This is a simple greedy algorithm:

LargestConcatenate(Numbers):
yourSalary← empty string
while Numbers is not empty:

maxNumber←−∞
for each number in Numbers:

if number ≥maxNumber:
maxNumber← number

append maxNumber to yourSalary
remove maxNumber from Numbers

return yourSalary

Unfortunately, this algorithm does not always maximize your salary!
For example, for an input consisting of two integers 23 and 3 it returns
233, while the largest number is 323.

Exercise Break. Prove that the algorithm works correctly for the case of
single-digit numbers.

Not to worry, all you need to do to maximize your salary is to replace
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the line

if number ≥maxNumber:

with the following line:

if IsBetter(number,maxNumber):

for an appropriately implemented function IsBetter. For example, IsBet-
ter(3, 23) should return True.

Stop and Think. How would you implement IsBetter?

Input format. The first line of the input contains an integer n. The second
line contains integers a1, . . . , an.

Output format. The largest number that can be composed out of a1, . . . , an.

Constraints. 1 ≤ n ≤ 100; 1 ≤ ai ≤ 103 for all 1 ≤ i ≤ n.

Sample 1.
Input:
2

21 2

Output:
221

Note that in this case the above algorithm also returns an incorrect
answer 212.

Sample 2.
Input:
5

9 4 6 1 9

Output:
99641

The input consists of single-digit numbers only, so the algorithm
above returns the correct answer.
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Sample 3.
Input:
3

23 39 92

Output:
923923

The (incorrect) LargestNumber algorithm nevertheless produces
the correct answer in this case, another reminder to always prove
the correctness of your greedy algorithms!
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Chapter 6: Divide-and-Conquer

In this chapter, you will learn about divide-and-conquer algorithms that
will help you to search huge databases a million times faster than brute-
force algorithms. Armed with this algorithmic technique, you will learn in
our Coursera and edX MOOCs that the standard way to multiply numbers
(that you learned in the grade school) is far from being the fastest! We
will then apply the divide-and-conquer technique to design fast sorting
algorithms. You will learn that these algorithms are optimal, i.e., even
the legendary computer scientist Alan Turing would not be able to design
a faster sorting algorithm!

1 3 7 8 9 12 15

1 3 7 8 9 12 15

1 3 7 8 9 12 15

Binary Search Majority Element

Improving
QuickSort

3 2 5 9 4

Number of
Inversions

1 0 2 1

Organizing
a Lottery

Closest Points

81
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6.1 Binary Search

Before you implement the binary search algorithm, try to solve our Clock
Game puzzle in which you make repeated guesses of the price of an item,
with the computer telling you only whether the true price is higher or
lower than the most recent guess. One possible strategy for the Clock
Game is to pick a range of prices within which the item’s price must fall,
and then guess a price halfway between these two extremes. If this guess is
incorrect, then you immediately eliminate the half of possible prices. You
then make a guess in the middle range of the remaining possible prices,
eliminating half of them again. Iterating this strategy quickly yields the
price of the item.

This strategy for the Clock Game motivates a binary search algorithm
for finding the position of an element q within a sorted array K . Before
you implement this algorithm, try to solve our Opposite Colors puzzle.

Sorted Array Search Problem
Search a key in a sorted array of keys.

Input: A sorted array K =
[k0, . . . , kn−1] of distinct integers
(i.e., k0 < k1 < · · · < kn−1) and an in-
teger q.
Output: Check whether q occurs
in K .

1 3 7 8 9 12 15

1 3 7 8 9 12 15

1 3 7 8 9 12 15

A naive way to solve this problem, is to scan the array K (run-
ning time O(n)). The BinarySearch algorithm below solves the prob-
lem in O(logn) time. It is initialized by setting minIndex equal to 0 and
maxIndex equal to n − 1. It sets midIndex to (minIndex + maxIndex)/2
and then checks to see whether q is greater than or less than K[midIndex].
If q is larger than this value, then BinarySearch iterates on the subarray
of K from minIndex to midIndex − 1; otherwise, it iterates on the subar-
ray of K from midIndex + 1 to maxIndex. Iteration eventually identifies
whether q occurs in K .
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BinarySearch(K[0..n− 1],q)
minIndex← 0
maxIndex← n− 1
while maxIndex ≥minIndex:

midIndex← b(minIndex+maxIndex)/2c
if K[midIndex] = q:

return midIndex
else if K[midIndex] < q:
minIndex←midIndex+ 1

else:
maxIndex←midIndex− 1

return “key not found”

For example, if q = 9 and K = [1,3,7,8,9,12,15], BinarySearch would
first set minIndex = 0, maxIndex = 6, and midIndex = 3. Since q is
greater than K[midIndex] = 8, we examine the subarray whose elements
are greater than K[midIndex] by setting minIndex = 4, so that midIndex is
recomputed as (4+6)/2 = 5. This time, q is smaller than K[midIndex] = 12,
and so we examine the subarray whose elements are smaller than this
value. This subarray consists of a single element, which is q.

The running time of BinarySearch is O(logn) since it reduces the
length of the subarray by at least a factor of 2 at each iteration of the
while loop. Note however that our grading system is unable to check
whether you implemented a fast O(logn) algorithm for the Sorted Array
Search or a naive O(n) algorithm. The reason is that any program needs
a linear time in order to just read the input data. For this reason, we ask
you to solve the following more general problem.

Sorted Array Multiple Search Problem
Search multiple keys in a sorted sequence of keys.

Input: A sorted array K = [k0, . . . , kn−1] of distinct integers and
an array Q = {q0, . . . , qm−1} of integers.
Output: For each qi , check whether it occurs in K .

Input format. The first line of the input contains an integer n and a se-
quence k0 < k1 < . . . < kn−1 of n distinct positive integers in increasing
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order. The next line contains an integer m and m positive integers
q0,q1, . . . , qm−1.

Output format. For all i from 0 to m − 1, output an index 0 ≤ j ≤ n − 1
such that kj = qi or −1, if there is no such index.

Constraints. 1 ≤ n,m ≤ 104; 1 ≤ ki ≤ 109 for all 0 ≤ i < n; 1 ≤ qj ≤ 109 for
all 0 ≤ j < m.

Sample.
Input:
5 1 5 8 12 13

5 8 1 23 1 11

Output:
2 0 -1 0 -1

Queries 8, 1, and 1 occur at positions 3, 0, and 0, respectively, while
queries 23 and 11 do not occur in the sequence of keys.
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6.2 Majority Element

Majority Element Problem
Check whether a given sequence of numbers con-
tains an element that appears more than half of
the times.

Input: A sequence of n integers.
Output: 1, if there is an element
that is repeated more than n/2
times, and 0 otherwise.

Here is the naive algorithm for solving the Majority Element Problem
with quadratic running time:

MajorityElement(A[1..n]):
for i from 1 to n:

currentElement← A[i]
count← 0
for j from 1 to n:

if A[j] = currentElement:
count← count+ 1

if count > n/2:
return currentElement

return “no majority element”

Hint. As you might have already guessed, this problem can be solved by
the divide-and-conquer algorithm in time O(n logn). Indeed, if a sequence
of length n contains a majority element, then the same element is also
a majority element for one of its halves. Thus, to solve this problem you
first split a given sequence into halves and recursively solve it for each
half. Do you see how to combine the results of two recursive calls?

Exercise Break. Prove that this idea leads to an algorithm with running
time O(n logn).

Input format. The first line contains an integer n, the next one contains
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a sequence of n non-negative integers a1, . . . , an.

Output format. Output 1 if the sequence contains an element that ap-
pears more than n/2 times, and 0 otherwise.

Constraints. 1 ≤ n ≤ 105; 0 ≤ ai ≤ 109 for all 1 ≤ i ≤ n.

Sample 1.
Input:
5

2 3 9 2 2

Output:
1

2 is the majority element.

Sample 2.
Input:
4

1 2 3 1

Output:
0

This sequence does not have a majority element (note that the
element 1 is not a majority element).

Exercise Break. Can you design an even faster O(n) algorithm?
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6.3 Improving QuickSort

The QuickSort algorithm presented in Sec-
tion 2.7 becomes to be slow in the case when
the input array contains many repeated ele-
ments. For example, when all elements in
the input array are the same, the partition
procedure splits the array into two parts,
one empty part and the other part with n−1
elements. Since QuickSort spends a ·n time
to perform this partition, its overall running
time is:

a ·n+ a · (n− 1) + a · (n− 2) + . . . = a · n · (n+ 1)
2

.

Your goal is to modify the QuickSort algorithm so that it works fast even
on sequences containing many identical elements.

Input format. The first line of the input contains an integer n. The next
line contains a sequence of n integers a0, a1, . . . , an−1.

Output format. Output this sequence sorted in non-decreasing order.

Constraints. 1 ≤ n ≤ 105; 1 ≤ ai ≤ 109 for all 0 ≤ i < n.

Sample.
Input:
5

2 3 9 2 2

Output:
2 2 2 3 9
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6.4 Number of Inversions

Number of Inversions Problem
Compute the number of inversions in a sequence
of integers.

Input: A sequence of integers
a1, . . . , an.
Output: The number of inversions
in the sequence, i.e., the number of
indices i < j such that ai > aj .

3 2 5 9 4

The number of inversions in a sequence measures how close the se-
quence is to being sorted. For example, a sequence sorted in the non-
descending order contains no inversions, while a sequence sorted in the
descending order contains n(n− 1)/2 inversions (every two elements form
an inversion).

A naive algorithm for the Number of Inversions Problem goes through
all possible pairs (i, j) and has running time O(n2). To solve this problem
in time O(n logn) using the divide-and-conquer technique split the input
array into two halves and make a recursive call on both halves. What
remains to be done is computing the number of inversions formed by
two elements from different halves. If we do this naively, this will bring
us back to O(n2) running time, since the total number of such pairs is
n
2 ·

n
2 = n2

4 = O(n2). It turns out that one can compute the number of inver-
sions formed by two elements from different halves in time O(n), if both
halves are already sorted. This suggest that instead of solving the orig-
inal problem we solve a more general problem: compute the number of
inversions in the given array and sort it at the same time.

Exercise Break. Modify the MergeSort algorithm for solving this prob-
lem.

Input format. The first line contains an integer n, the next one contains
a sequence of integers a1, . . . , an.

Output format. The number of inversions in the sequence.
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Constraints. 1 ≤ n ≤ 30000, 1 ≤ ai ≤ 109 for all 1 ≤ i ≤ n.

Sample.
Input:
5

2 3 9 2 9

Output:
2

The two inversions here are (2,4) (a2 = 3 > 2 = a4) and (3,4)
(a3 = 9 > 2 = a4).
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6.5 Organizing a Lottery

Points and Segments Problem
Given a set of points and a set of segments on
a line, compute, for each point, the number of
segments it is contained in.

Input: A set of segments and a set
of points.
Output: The number of segments
containing each point.

1 0 2 1

You are organizing an online lottery. To participate, a person bets on
a single integer. You then draw several segments of consecutive integers at
random. A participant’s payoff is proportional to the number of segments
that contain the participant’s number. You need an efficient algorithm for
computing the payoffs for all participants. A simple scan of the list of all
ranges for each participant is too slow since your lottery is very popular:
you have thousands of participants and thousands of ranges.

Input format. The first line contains two non-negative integers s and p
defining the number of segments and the number of points on a line,
respectively. The next s lines contain two integers ai ,bi defining the
i-th segment [ai ,bi]. The next line contains p integers defining points
x1, . . . ,xp.

Output format. p non-negative integers k1, . . . , kp where ki is the number
of segments that contain xi .

Constraints. 1 ≤ s,p ≤ 50000; −108 ≤ ai ≤ bi ≤ 108 for all 1 ≤ i ≤ s; −108 ≤
xj ≤ 108 for all 1 ≤ j ≤ p.
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Sample 1.
Input:
2 3

0 5

7 10

1 6 11

Output:
1 0 0

We have two segments and three points. The first point lies only in
the first segment while the remaining two points are outside of all
segments.

Sample 2.
Input:
1 3

-10 10

-100 100 0

Output:
0 0 1

Sample 3.
Input:
3 2

0 5

-3 2

7 10

1 6

Output:
2 0
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6.6 Closest Points

Closest Points Problem
Find the closest pair of points in a set of points
on a plane.

Input: A set of points on a plane.
Output: The minimum distance
between a pair of these points.

This computational geometry problem has many applications in com-
puter graphics and vision. A naive algorithm with quadratic running
time iterates through all pairs of points to find the closest pair. Your goal
is to design an O(n logn) time divide and conquer algorithm.

To solve this problem in time O(n logn), let’s first split the given
n points by an appropriately chosen vertical line into two halves S1 and S2
of size n

2 (assume for simplicity that all x-coordinates of the input points
are different). By making two recursive calls for the sets S1 and S2, we find
the minimum distances d1 and d2 in these subsets. Let d = min{d1,d2}.

d2d1

It remains to check whether there exist points p1 ∈ S1 and p2 ∈ S2 such that
the distance between them is smaller than d. We cannot afford to check
all possible such pairs since there are n

2 ·
n
2 = Θ(n2) of them. To check this

faster, we first discard all points from S1 and S2 whose x-distance to the
middle line is greater than d. That is, we focus on the following strip:
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d2d1

d d

Stop and Think. Why can we narrow the search to this strip?

Now, let’s sort the points of the strip by their y-coordinates and denote the
resulting sorted list by P = [p1, . . . ,pk]. It turns out that if |i−j | > 7, then the
distance between points pi and pj is greater than d for sure. This follows
from the Exercise Break below.

Exercise Break. Partition the strip into d×d squares as shown below and
show that each such square contains at most four input points.

d2d1

d d

This results in the following algorithm. We first sort the given n points
by their x-coordinates and then split the resulting sorted list into two
halves S1 and S2 of size n

2 . By making a recursive call for each of the
sets S1 and S2, we find the minimum distances d1 and d2 in them. Let
d = min{d1,d2}. However, we are not done yet as we also need to find the
minimum distance between points from different sets (i.e, a point from S1
and a point from S2) and check whether it is smaller than d. To perform
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such a check, we filter the initial point set and keep only those points
whose x-distance to the middle line does not exceed d. Afterwards, we
sort the set of points in the resulting strip by their y-coordinates and scan
the resulting list of points. For each point, we compute its distance to
the seven subsequent points in this list and compute d′, the minimum
distance that we encountered during this scan. Afterwards, we return
min{d,d′}.

The running time of the algorithm satisfies the recurrence relation

T (n) = 2 · T
(n

2

)
+O(n logn) .

The O(n logn) term comes from sorting the points in the strip by their
y-coordinates at every iteration.

Exercise Break. Prove that T (n) = O(n log2n) by analyzing the recursion
tree of the algorithm.

Exercise Break. Show how to bring the running time down to O(n logn)
by avoiding sorting at each recursive call.

Input format. The first line contains the number of points n. Each of the
following n lines defines a point (xi , yi).

Output format. The minimum distance. Recall that the distance between
points (x1, y1) and (x2, y2) is equal to

√
(x1 − x2)2 + (y1 − y2)2. Thus,

while the Input contains only integers, the Output is not necessarily
integer and you have to pay attention to precision when you report
it. The absolute value of the difference between the answer of your
program and the optimal value should be at most 10−3. To ensure
this, output your answer with at least four digits after the decimal
point (otherwise even correctly computed answer may fail to pass
our grader because of the rounding errors).

Constraints. 2 ≤ n ≤ 105; −109 ≤ xi , yi ≤ 109 are integers.
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Sample 1.
Input:
2

0 0

3 4

Output:
5.0

There are only two points at distance 5.

Sample 2.
Input:
11

4 4

-2 -2

-3 -4

-1 3

2 3

-4 0

1 1

-1 -1

3 -1

-4 2

-2 4

Output:
1.414213

The smallest distance is
√

2. There are two pairs of points at this
distance shown in blue and red below: (−1,−1) and (−2,−2); (−2,4)
and (−1,3).

x

y



96 Chapter 6. Divide-and-Conquer



Chapter 7: Dynamic Programming

In this chapter, you will implement various dynamic programming algo-
rithms and will see how they solve problems that evaded all attempts
to solve them using greedy or divide-and-conquer strategies. There are
countless applications of dynamic programming in practice ranging from
searching for similar Internet pages to gene prediction in DNA sequences.
You will learn how the same idea helps to automatically make spelling
corrections and to find the differences between two versions of the same
text.

¢1

¢3

¢4

Money
Change Again

1

+1

×2

×3

Primitive
Calculator

short

hort

port

ports

Edit Distance

7 2 9 3 1 5 9 4

2 8 1 3 9 7

Longest Common
Subsequence of
Two Sequences

8 3 2 1 7 3

8 2 1 3 8 10 7

6 8 3 1 4 7

Longest Common
Subsequence of

Three Sequences

Maximum
Amount of Gold

3 6 4 1 9 6 9 1

Partitioning
Souvenirs

((8− 5)× 3) = 9
(8− (5× 3)) = −7

Maximum Value
of an Arith-

metic Expression

97
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7.1 Money Change Again

¢1

¢3

¢4

As we already know, a natural greedy strat-
egy for the change problem does not work
correctly for any set of denominations. For
example, if the available denominations are
1, 3, and 4, the greedy algorithm will change
6 cents using three coins (4 + 1 + 1) while
it can be changed using just two coins (3+3).
Your goal now is to apply dynamic pro-
gramming for solving the Money Change
Problem for denominations 1, 3, and 4.

Input format. Integer money.

Output format. The minimum number of coins with denominations
1, 3, 4 that changes money.

Constraints. 1 ≤money ≤ 103.

Sample 1.
Input:
2

Output:
2

2 = 1 + 1.

Sample 2.
Input:
34

Output:
9

34 = 3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4.
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7.2 Primitive Calculator

Primitive Calculator Problem
Find the minimum number of operations needed
to get a positive integer n from 1 using only three
operations: add 1, multiply by 2, and multiply
by 3.

Input: An integer n.
Output: The minimum number of
operations “+1”, “×2”, and “×3”
needed to get n from 1.

1

+1

×2

×3

You are given a calculator that only performs the following three oper-
ations with an integer x: add 1 to x, multiply x by 2, or multiply x by 3.
Given a positive integer n, your goal is to find the minimum number of op-
erations needed to obtain n starting from the number 1. Before solving the
programming challenge below, test your intuition with our Primitive Cal-
culator puzzle.

Let’s try a greedy strategy for solving this problem: if the current num-
ber is at most n/3, multiply it by 3; if it is larger than n/3, but at most n/2,
multiply it by 2; otherwise add 1 to it. This results in the following pseu-
docode.

GreedyCalculator(n):
numOperations← 0
currentNumber← 1
while currentNumber < n:

if currentNumber ≤ n/3:
currentNumber← 3× currentNumber

else if currentNumber ≤ n/2:
currentNumber← 2× currentNumber

else:
currentNumber← 1 + currentNumber

numOperations← numOperations+ 1
return numOperations
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Stop and Think. Can you find a number n such that
GreedyCalculator(n) produces an incorrect result?

Input format. An integer n.

Output format. In the first line, output the minimum number k of opera-
tions needed to get n from 1. In the second line, output a sequence of
intermediate numbers. That is, the second line should contain posi-
tive integers a0, a1, . . . , ak such that a0 = 1, ak = n and for all 1 ≤ i ≤ k,
ai is equal to either ai−1 + 1, 2ai−1, or 3ai−1. If there are many such
sequences, output any one of them.

Constraints. 1 ≤ n ≤ 106.

Sample 1.
Input:
1

Output:
0

1

Sample 2.
Input:
96234

Output:
14

1 3 9 10 11 22 66 198 594 1782 5346 16038 16039 32078 96234

Another valid output in this case is “1 3 9 10 11 33 99 297 891 2673
8019 16038 16039 48117 96234”.
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7.3 Edit Distance

Edit Distance Problem
Compute the edit distance between two strings.

Input: Two strings.
Output: The minimum number
of single symbol insertions, dele-
tions, and substitutions to trans-
form one string into the other one.

short

hort

port

ports

Edit distance has many applications in computational biology, natural
language processing, spell checking, etc. For example, biologists often
analyze edit distances when they search for disease-causing mutations.

Input format. Two strings consisting of lower case latin letters, each on
a separate line.

Output format. The edit distance between them.

Constraints. The length of both strings is at least 1 and at most 100.

Sample 1.
Input:
short

ports

Output:
3

The second string can be obtained from the first one by delet-
ing s, substituting h for p, and inserting s. This can be compactly
visualized by the following alignment.

s h o r t −
− p o r t s
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Sample 2.
Input:
editing

distance

Output:
5

Delete e, insert s after i, substitute i for a, substitute g for c, insert e
to the end.

e d i − t i n g −
− d i s t a n c e

Sample 3.
Input:
ab

ab

Output:
0
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7.4 Longest Common Subsequence of Two Se-
quences

Longest Common Subsequence of Two Se-
quences Problem
Compute the longest common subsequence of two
sequences.

Input: Two sequences.
Output: Their longest common
subsequence.

7 2 9 3 1 5 9 4

2 8 1 3 9 7

Given two sequences A = (a1, a2, . . . , an) and B = (b1,b2, . . . , bm), find the
length of their longest common subsequence, i.e., the largest non-negative
integer p such that there exist indices

1 ≤ i1 < i2 < · · · < ip ≤ n,

1 ≤ j1 < j2 < · · · < jp ≤m.

such that

ai1 = bj1 ,

ai2 = bj2 ,
...

aip = bjp .

The problem has applications in data comparison (e.g., diff utility, merge
operation in various version control systems), bioinformatics (finding sim-
ilarities between genes in various species), and others.

Input format. First line: n. Second line: a1, a2, . . . , an. Third line: m.
Fourth line: b1,b2, . . . , bm.

Output format. p.
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Constraints. 1 ≤ n,m ≤ 100; −109 ≤ ai ,bi ≤ 109 for all i.

Sample 1.
Input:
3

2 7 5

2

2 5

Output:
2

A common subsequence of length 2 is (2,5).

Sample 2.
Input:
1

7

4

1 2 3 4

Output:
0

The two sequences do not share elements.

Sample 3.
Input:
4

2 7 8 3

4

5 2 8 7

Output:
2

One common subsequence is (2,7). Another one is (2,8).
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7.5 Longest Common Subsequence of Three Se-
quences

Longest Common Subsequence of Three Se-
quences Problem
Compute the longest common subsequence of
three sequences.

Input: Three sequences.
Output: Their longest common
subsequence.

8 3 2 1 7 3

8 2 1 3 8 10 7

6 8 3 1 4 7

Given three sequences A = (a1, a2, . . . , an), B = (b1,b2, . . . , bm), and C =
(c1, c2, . . . , cl), find the length of their longest common subsequence, i.e.,
the largest non-negative integer p such that there exist indices

1 ≤ i1 < i2 < · · · < ip ≤ n,

1 ≤ j1 < j2 < · · · < jp ≤m,

1 ≤ k1 < k2 < · · · < kp ≤ l

such that

ai1 = bj1 = ck1
,

ai2 = bj2 = ck2
,

...

aip = bjp = ckp .

Input format. First line: n. Second line: a1, a2, . . . , an. Third line: m.
Fourth line: b1,b2, . . . , bm. Fifth line: l. Sixth line: c1, c2, . . . , cl .

Output format. p.

Constraints. 1 ≤ n,m, l ≤ 100; −109 ≤ ai ,bi , ci ≤ 109.
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Sample 1.
Input:
3

1 2 3

3

2 1 3

3

1 3 5

Output:
2

A common subsequence of length 2 is (1,3).

Sample 2.
Input:
5

8 3 2 1 7

7

8 2 1 3 8 10 7

6

6 8 3 1 4 7

Output:
3

One common subsequence of length 3 in this case is (8,3,7). Another
one is (8,1,7).
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7.6 Maximum Amount of Gold

Maximum Amount of Gold Problem
Given a set of bars of gold of various weights and
a backpack, place as much gold as possible into
the backpack.

Input: A set of n gold bars of
weights w1, . . . ,wn and a backpack
that can hold at most W pounds.
Output: Find a subset of gold bars
of maximum total weight not ex-
ceeding W .

You found a set of gold bars and your goal is to pack as much gold as
possible into your bag that may hold at most W pounds. There is just one
copy of each bar and for each bar you can either take it or not (hence you
cannot take a fraction of a bar).

A natural greedy strategy is to grab the heaviest bar that still fits into
the remaining capacity of the backpack and iterate.

Stop and Think. Find an input for which the greedy algorithm fails.

Input format. The first line of the input contains the capacity W of a
backpack and the number n of bars of gold. The next line contains n
integers w1, . . . ,wn defining the weights of the bars of gold.

Output format. The maximum weight of gold that fits into a backpack of
capacity W .

Constraints. 1 ≤W ≤ 104; 1 ≤ n ≤ 300; 0 ≤ w1, . . . ,wn ≤ 105.
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Sample.
Input:
10 3

1 4 8

Output:
9

The sum of the weights of the first and the last bar is equal to 9.
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7.7 Partitioning Souvenirs

3-Partition Problem
Partition a set of integers into three subsets with
equal sums.

Input: Integers v1,v2, . . . , vn.
Output: Check whether it is
possible to partition them into
three subsets with equal sums, i.e.,
check whether there exist three
disjoint sets S1,S2,S3 ⊆ {1,2, . . . ,n}
such that S1 ∪ S2 ∪ S3 = {1,2, . . . ,n}
and ∑

i∈S1

vi =
∑
j∈S2

vj =
∑
k∈S3

vk .

3 6 4 1 9 6 9 1

You and two of your friends have just returned back home after visiting
various countries. Now you would like to evenly split all the souvenirs
that all three of you bought.

Input format. The first line contains an integer n. The second line con-
tains integers v1,v2, . . . , vn separated by spaces.

Output format. Output 1, if it possible to partition v1,v2, . . . , vn into three
subsets with equal sums, and 0 otherwise.

Constraints. 1 ≤ n ≤ 20, 1 ≤ vi ≤ 30 for all i.

Sample 1.
Input:
4

3 3 3 3

Output:
0
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Sample 2.
Input:
1

40

Output:
0

Sample 3.
Input:
11

17 59 34 57 17 23 67 1 18 2 59

Output:
1

34 + 67 + 17 = 23 + 59 + 1 + 17 + 18 = 59 + 2 + 57.

Sample 4.
Input:
13

1 2 3 4 5 5 7 7 8 10 12 19 25

Output:
1

1 + 3 + 7 + 25 = 2 + 4 + 5 + 7 + 8 + 10 = 5 + 12 + 19.
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7.8 Maximum Value of an Arithmetic Expres-
sion

Maximum Value of an Arithmetic Expres-
sion Problem
Parenthesize an arithmetic expression to maxi-
mize its value.

Input: An arithmetic expression
consisting of digits as well as plus,
minus, and multiplication signs.
Output: Add parentheses to the
expression in order to maximize its
value.

((8− 5)× 3) = 9
(8− (5× 3)) = −7

For example, for an expression (3 + 2× 4) there are two ways of paren-
thesizing it: (3 + (2× 4)) = 11 and ((3 + 2)× 4) = 20.

Exercise Break. Parenthesize the expression “(5 − 8 + 7 × 4 − 8 + 9)” to
maximize its value.

Input format. The only line of the input contains a string s of length 2n+
1 for some n, with symbols s0, s1, . . . , s2n. Each symbol at an even
position of s is a digit (that is, an integer from 0 to 9) while each
symbol at an odd position is one of three operations from {+,-,*}.

Output format. The maximum possible value of the given arithmetic ex-
pression among all possible orders of applying arithmetic opera-
tions.

Constraints. 1 ≤ n ≤ 14 (hence the string contains at most 29 symbols).

Sample.
Input:
5-8+7*4-8+9

Output:
200

200 = (5− ((8 + 7)× (4− (8 + 9))))
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Appendix

Compiler Flags

C (gcc 5.2.1). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename> -lm

C++ (g++ 5.2.1). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename> -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try re-
placing it with -std=c++0x flag or compiling without this flag at all
(all starter solutions can be compiled without it). On Linux and Ma-
cOS, you most probably have the required compiler. On Windows,
you may use your favorite compiler or install, e.g., cygwin.

C# (mono 3.2.8). File extensions: .cs. Flags:

mcs

Haskell (ghc 7.8.4). File extensions: .hs. Flags:

ghc -O2

Java (Open JDK 8). File extensions: .java. Flags:

javac -encoding UTF-8

java -Xmx1024m

JavaScript (Node v6.3.0). File extensions: .js. Flags:

nodejs

Python 2 (CPython 2.7). File extensions: .py2 or .py (a file ending in .py

needs to have a first line which is a comment containing “python2”).
No flags:

python2
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Python 3 (CPython 3.4). File extensions: .py3 or .py (a file ending in .py

needs to have a first line which is a comment containing “python3”).
No flags:

python3

Ruby (Ruby 2.1.5). File extensions: .rb.

ruby

Scala (Scala 2.11.6). File extensions: .scala.

scalac

Frequently Asked Questions

What Are the Possible Grading Outcomes?

There are only two outcomes: “pass” or “no pass.” To pass, your program
must return a correct answer on all the test cases we prepared for you, and
do so under the time and memory constraints specified in the problem
statement. If your solution passes, you get the corresponding feedback
”Good job!” and get a point for the problem. Your solution fails if it either
crashes, returns an incorrect answer, works for too long, or uses too much
memory for some test case. The feedback will contain the index of the first
test case on which your solution failed and the total number of test cases
in the system. The tests for the problem are numbered from 1 to the total
number of test cases for the problem, and the program is always tested
on all the tests in the order from the first test to the test with the largest
number.

Here are the possible outcomes:

• Good job! Hurrah! Your solution passed, and you get a point!

• Wrong answer. Your solution outputs incorrect answer for some test
case. Check that you consider all the cases correctly, avoid integer
overflow, output the required white spaces, output the floating point
numbers with the required precision, don’t output anything in addi-
tion to what you are asked to output in the output specification of
the problem statement.
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• Time limit exceeded. Your solution worked longer than the al-
lowed time limit for some test case. Check again the running time of
your implementation. Test your program locally on the test of max-
imum size specified in the problem statement and check how long it
works. Check that your program doesn’t wait for some input from
the user which makes it to wait forever.

• Memory limit exceeded. Your solution used more than the al-
lowed memory limit for some test case. Estimate the amount of
memory that your program is going to use in the worst case and
check that it does not exceed the memory limit. Check that your
data structures fit into the memory limit. Check that you don’t cre-
ate large arrays or lists or vectors consisting of empty arrays or empty
strings, since those in some cases still eat up memory. Test your pro-
gram locally on the tests of maximum size specified in the problem
statement and look at its memory consumption in the system.

• Cannot check answer. Perhaps the output format is

wrong. This happens when you output something different
than expected. For example, when you are required to output
either “Yes” or “No”, but instead output 1 or 0. Or your program
has empty output. Or your program outputs not only the correct
answer, but also some additional information (please follow the
exact output format specified in the problem statement). Maybe
your program doesn’t output anything, because it crashes.

• Unknown signal 6 (or 7, or 8, or 11, or some other). This
happens when your program crashes. It can be because of a division
by zero, accessing memory outside of the array bounds, using unini-
tialized variables, overly deep recursion that triggers a stack over-
flow, sorting with a contradictory comparator, removing elements
from an empty data structure, trying to allocate too much memory,
and many other reasons. Look at your code and think about all those
possibilities. Make sure that you use the same compiler and the same
compiler flags as we do.

• Internal error: exception... Most probably, you submitted
a compiled program instead of a source code.
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• Grading failed. Something wrong happened with the system. Re-
port this through Coursera or edX Help Center.

Why the Test Cases Are Hidden?

See section 3.2.1.

May I Post My Solution at the Forum?

Please do not post any solutions at the forum or anywhere on the web, even
if a solution does not pass the tests (as in this case you are still revealing
parts of a correct solution). Our students follow the Honor Code: “I will
not make solutions to homework, quizzes, exams, projects, and other as-
signments available to anyone else (except to the extent an assignment
explicitly permits sharing solutions).”

Do I Learn by Trying to Fix My Solution?

My implementation always fails in the grader, though I already tested and
stress tested it a lot. Would not it be better if you gave me a solution to this
problem or at least the test cases that you use? I will then be able to fix my code
and will learn how to avoid making mistakes. Otherwise, I do not feel that I
learn anything from solving this problem. I am just stuck.

First of all, learning from your mistakes is one of the best ways to learn.
The process of trying to invent new test cases that might fail your pro-

gram is difficult but is often enlightening. Thinking about properties of
your program makes you understand what happens inside your program
and in the general algorithm you’re studying much more.

Also, it is important to be able to find a bug in your implementation
without knowing a test case and without having a reference solution, just
like in real life. Assume that you designed an application and an annoyed
user reports that it crashed. Most probably, the user will not tell you the
exact sequence of operations that led to a crash. Moreover, there will be
no reference application. Hence, it is important to learn how to find a bug
in your implementation yourself, without a magic oracle giving you either
a test case that your program fails or a reference solution. We encourage
you to use programming assignments in this class as a way of practicing
this important skill.
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If you have already tested your program on all corner cases you can
imagine, constructed a set of manual test cases, applied stress testing, etc,
but your program still fails, try to ask for help on the forum. We encour-
age you to do this by first explaining what kind of corner cases you have
already considered (it may happen that by writing such a post you will
realize that you missed some corner cases!), and only afterwards asking
other learners to give you more ideas for tests cases.
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